Does Language Shape Thought?: Mandarin and English Speakers’ Conceptions of Time

Lera Boroditsky

Stanford University

Does the language you speak affect how you think about the world? This question is taken up in three experiments. English and Mandarin talk about time differently—English predominantly talks about time as if it were horizontal, while Mandarin also commonly describes time as vertical. This difference between the two languages is reflected in the way their speakers think about time. In one study, Mandarin speakers tended to think about time vertically even when they were thinking for English (Mandarin speakers were faster to confirm that March comes earlier than April if they had just seen a vertical array of objects than if they had just seen a horizontal array, and the reverse was true for English speakers). Another study showed that the extent to which Mandarin–English bilinguals think about time vertically is related to how old they were when they first began to learn English. In another experiment native English speakers were taught to talk about time using vertical spatial terms in a way similar to Mandarin. On a subsequent test, this group of English speakers showed the same bias to think about time vertically as was observed with Mandarin speakers. It is concluded that (1) language is a powerful tool in shaping thought about abstract domains and (2) one’s native language plays an important role in shaping habitual thought (e.g., how one tends to think about time) but does not entirely determine one’s thinking in the strong Whorfian sense.

Key Words: Whorf; time; language; metaphor; Mandarin.

Does the language you speak shape the way you understand the world? Linguists, philosophers, anthropologists, and psychologists have long been interested in this question. This interest has been fueled in large part by the observation that different languages talk about the world differently. Does the fact that languages differ mean that people who speak different languages...
think about the world differently? Does learning new languages change the way one thinks? Do polyglots think differently when speaking different languages? Although such questions have long been issues of interest and controversy, definitive answers are Scarce. This article briefly reviews the empirical history of these questions and describes three new experiments that demonstrate the role of language in shaping habitual thought.

The doctrine of Linguistic Determinism—the idea that thought is determined by language—is most commonly associated with the writings of Benjamin Lee Whorf. Whorf, impressed by linguistic diversity, proposed that the categories and distinctions of each language enshrine a way of perceiving, analyzing, and acting in the world. In so far as languages differ, their speakers too should differ in how they perceive and act in objectively similar situations (Whorf, 1956). This strong Whorfian view—that thought and action are entirely determined by language—has long been abandoned in the field. Particularly effective in undermining the strong view was work on color perception demonstrating that the Dani (a tribe in New Guinea) had little trouble learning the English set of color categories, despite having only two words for colors in their language (Heider, 1972; Rosch, 1975, 1978; but see Lucy & Shweder, 1979; Kay & Kempton, 1984).

Although the strong linguistic determinism view seems untenable, many weaker but still interesting formulations can be entertained. For example, Slobin (1987, 1996) has suggested that language may influence thought during “thinking for speaking.” Languages force us to attend to certain aspects of our experience by making them grammatically obligatory. Therefore, speakers of different languages may be biased to attend to and encode different aspects of their experience while speaking. In a similar vein, Hunt and Agnoli (1991) reviewed evidence that language may influence thought by making habitual distinctions more fluent.

Since Rosch’s work on color, several lines of research have explored domains that appear more likely to reveal linguistic influences than such low-level domains as color perception. Among the evidence are cross-linguistic differences in the object-substance distinction in Yucatec Mayan and Japanese (e.g., Gentner & Imai, 1997; Lucy, 1992), effects of grammatical gender distinctions in Spanish (Sera, Berge, & del Castillo, 1994), cross-linguistic differences in spatial thinking (e.g., Bowerman, 1996; Levinson, 1996), and evidence suggesting that language influences conceptual development (e.g., Markman & Hutchinson, 1984; Waxman & Kosowski, 1990).

LIMITATIONS OF RECENT EVIDENCE

Although the evidence so far is suggestive, there are serious limitations common to most recent studies of linguistic determinism. First, speakers of different languages are usually tested only in their native language. Any differences in these comparisons can only show the effect of a language on
thinking for that particular language. These studies cannot tell us whether experience with a language affects language-independent thought such as thought for other languages or thought in nonlinguistic tasks.

Second, comparing studies conducted in different languages poses a deeper problem: There is simply no way to be certain that the stimuli and instructions are truly the same in both languages. This problem remains even if the verbal instructions are minimal. For example, even if the task is nonlinguistic and the instructions are simply ‘‘which one is the same?’’, one cannot be sure that the words used for ‘‘same’’ mean the same thing in both languages. If in one language the word for ‘‘same’’ is closer in meaning to ‘‘identical,’’ while in the other language it is closer to ‘‘relationally similar,’’ speakers of different languages may behave differently, but due only to the difference in instructions, not because of any interesting differences in thought. There is no sure way to guard against this possibility when tasks are translated into different languages. Since there is no way to know that participants in different languages are performing the same task, it is difficult to deem the comparisons meaningful.

A third limitation is that even when nonlinguistic tasks (such as sorting into categories or making similarity judgments) are used, the tasks themselves are quite explicit. Sorting and similarity judgment tasks require participants to decide on a strategy for completing the task. How should I divide these things into two categories? What am I supposed to base my similarity judgments on? When figuring out how to perform a task, participants may simply make a conscious decision to follow the distinctions reinforced by their language. For this reason, evidence collected using such explicit measures as sorting preferences or similarity judgments is not convincing as nonlinguistic evidence.

Showing that experience with a language affects thought in some broader sense (other than thinking for that particular language) would require observing a cross-linguistic difference on some implicit measure (e.g., reaction time) in a non-language-specific task. The studies described in this article do just that. They show an effect of first-language thinking on second-language understanding using the implicit measure of reaction time. In particular, the studies investigate whether speakers of English and Mandarin Chinese think differently about the domain of time even when both groups are ‘‘thinking for English.’’

TIME

How is the domain of time learned, represented, and reasoned about? Certainly some elements of time are apparent in our experience with the world. From experience, we know that each moment in time only happens once, that we can only be in one place at one time, that we can never go back, and that many aspects of our experience are not permanent (i.e., faculty
meetings are not everlasting, but rather begin and end at certain times). In other words, our experience dictates that time is a phenomenon in which we, the observer, experience continuous unidirectional change that may be marked by appearance and disappearance of objects and events. These aspects of conceptual time should be universal across cultures and languages. Indeed, this appears to be the case. In order to capture the sequential order of events, time is generally conceived as a one-dimensional, directional entity. Across languages, the spatial terms imported to talk about time are also one-dimensional, directional terms such as \textit{ahead/behind} or \textit{up/down} rather than multidimensional or symmetric terms such as \textit{narrow/wide} or \textit{left/right} (Clark, 1973; Traugott, 1978). Aspects of time that are extractable from world experience (temporally bounded events, unidirectional change, etc.) appear to be universal across cultures and languages.

However, there are many aspects of our concept of time that are not observable in the world. For example, does time move horizontally or vertically? Does it move forward or back, left or right, up or down? Does it move past us, or do we move through it? All of these aspects are left unspecified in our experience with the world. They are, however, specified in our language — most often through spatial metaphors. Across languages people use spatial metaphors to talk about time. Whether they are looking \textit{forward} to a brighter tomorrow, proposing theories \textit{ahead} of their time, or falling \textit{behind} schedule, they rely on terms from the domain of space to talk about time (Clark, 1973; Lehrer, 1990; Traugott, 1978). Those aspects of time that are not constrained by our physical experience with time are free to vary across languages and our conceptions of them may be shaped by the way we choose to talk about them. This article focuses on one such aspect of time and examines whether different ways of talking about time lead to different ways of thinking about it.

\textit{Time in English}

In English, we predominantly use front/back terms to talk about time. We can talk about the good times \textit{ahead} of us or the hardships \textit{behind} us. We can move meetings \textit{forward}, push deadlines \textit{back}, and eat dessert \textit{before} we are done with our vegetables. On the whole, the terms used to order events are the same as those used to describe asymmetric horizontal spatial relations (e.g., “he took three steps \textit{forward}” or “the dumpster is \textit{behind} the store”).

\textit{Time in Mandarin Chinese}

In Mandarin, front/back spatial metaphors for time are also common (Scott, 1989). Mandarin speakers use the spatial morphemes \textit{qián} (“front”) and \textit{hòu} (“back”) to talk about time. Examples in Fig. 1 show parallel uses of \textit{qián} and \textit{hòu} in their spatial and temporal senses. Example sentences and their English glosses were taken from Scott (1989).

What makes Mandarin interesting for present purposes is that Mandarin
FIG. 1. Example spatial and temporal uses of *front/back* terms *qián* and *hòu* in Mandarin and their English glosses.

speakers also systematically use vertical metaphors to talk about time (Scott, 1989). The spatial morphemes *shàng* (‘‘up’’) and *xià* (‘‘down’’) are frequently used to talk about the order of events, weeks, months, semesters, and more. Earlier events are said to be *shàng* or ‘‘up,’’ and later events are said to be *xià* or ‘‘down.’’ Examples in Fig. 2 show parallel uses of *shàng* and *xià* to describe spatial and temporal relations (examples taken from Scott, 1989).

Although in English vertical spatial terms can also be used to talk about time (e.g., ‘‘hand down knowledge from generation to generation’’ or ‘‘the meeting was coming up’’), these uses are not nearly as common or systematic as is the use of *shàng* and *xià* in Mandarin (Chun, 1997a, 1997b; Scott, 1989).

In summary, both Mandarin and English speakers use horizontal terms to talk about time. In addition, Mandarin speakers commonly use the vertical terms *shàng* and *xià*.1

1 The closest English counterparts to the Mandarin uses of *shàng* and *xià* are the terms *next (following)/last (previous)* and *earlier/later*. *Earlier* and *later* are similar to *shàng* and *xià* in that they use an absolute framework to determine the order of events. In Mandarin, *shàng* always refers to events closer to the past, and *xià* always refers to events closer to the future. The same is true in English for *earlier* and *later* terms. This is not true, however, for the other English terms for time. Terms like *before/after, ahead/behind, and forward/back* can be used not only to order events relative to the direction of motion of time, but also relative to the observer. When ordering events relative to the direction of motion of time, we can say that
FIG. 2. Example spatial and temporal uses of *up/down* terms *shàng* and *xià* in Mandarin and their English glosses.

(1) SPACE

mǎo shèng shù
cats climb trees

TIME

shàng ge yuè
last (or previous) month

(2) SPACE

tā xià le shān méi yǒu
has she descended the mountain or not?

TIME

xià ge yuè
next (or following) month

DOES LANGUAGE SHAPE THOUGHT?

So, do the differences between the English and Mandarin ways of talking about time lead to differences in how their speakers think about time? This question can be expanded into two separate issues: (1) Does using spatial language to talk about time have short-term implications for on-line processing? and (2) Does using spatial language to talk about time have long-term implications?

Does Metaphor Use Have Implications for Online Processing?

Recent evidence suggests that people do not just *talk* about time in spatial terms, but that they also use their spatial knowledge to *think* about time. Boroditsky (2000) showed that people are able to reuse relational information made available by spatial primes to think about time. For example, priming a particular perspective for thinking about space biased how people later...

Thursday is *before* Friday. Here, *before* refers to an event that is closer to the past. But, we can also order events relative to the observer, as in “The best is *before us.*” Here, *before* refers to an event closer to the future. The same is true for *ahead/behind* and *forward/back*. *Qiàn* and *hòu*, the horizontal terms used in Mandarin to talk about time, also share this flexibility. Unlike *before/after, ahead/behind*, and *qiàn/hòu*, terms like *earlier/later* and *shàng/xià* are not used to order events relative to the observer. For example, one cannot say that “the meeting is *earlier* than us” to mean that it is further in the future. *Earlier/later* and *shàng/xià* are absolute terms.
interpreted an ambiguous question about time. Also, spatial relational information was found to be just as useful for thinking about time as temporal information—in answering questions about time, subjects benefited equally from a spatial prime (129-ms benefit) as from a temporal prime (130-ms benefit). It appears that spatiotemporal metaphors do have implications for online conceptual processing.

Does Metaphor Use Have Long-Term Implications for Processing?

How could one’s choice of spatiotemporal metaphors affect thinking about time in the long run? Boroditsky (2000) argued that spatial metaphors can provide relational structure to those aspects of time where the structure may not be obvious from world experience (e.g., whether time should be vertical or horizontal). Using spatial metaphors to describe time encourages structural alignment between the two domains and may cause relational structure to be imported from space to time. The mechanism for this type of metaphorical structuring may be the same as that used in analogical inference (Gentner, Bowdle, & Wolff, in press; Gentner & Wolff, 1997). Language-encouraged mappings between space and time may then come to be stored in the domain of time. That is, frequently invoked mappings may become habits of thought. For example, because English speakers often use horizontal metaphors to talk about time, they might grow to think about time horizontally even when not explicitly processing a spatiotemporal metaphor (e.g., when understanding a sentence phrased in purely temporal terms like *earlier* and *later*). For the same reasons, Mandarin speakers might grow to think about time vertically.

Experiment 1 was designed to test whether using spatial metaphors to talk about time can have both immediate and long-term implications for how people think about time. Mandarin and English speakers were asked to answer a spatial priming question followed by a target question about time. The spatial primes were either about horizontal spatial relations between two objects (see Fig. 3a) or about vertical relations (see Fig. 3b). After solving a set of two primes, participants answered a TRUE/FALSE target question about time. Half of the target questions were designed to test the immediate effect of metaphors on processing and so used a horizontal spatiotemporal

![FIG. 3a. Example of a horizontal spatial prime used in Experiments 1 and 3.](image)
metaphor (e.g., “March comes before April.”). If horizontal spatiotemporal metaphors are processed by activating horizontal spatial knowledge, then people should be faster to understand such a metaphor if they have just seen a horizontal spatial prime (Fig. 3a) than if they have just seen a vertical prime (Fig. 3b). The other half of the target questions were designed to test the long-term effects of metaphor use on thinking about time and so did not use a metaphor, but instead used the purely temporal terms earlier and later (e.g., “March comes earlier than April”). If the metaphors frequently used in one’s native language do have a long-term effect on how one thinks about time, then even when people are not trying to understand a metaphor (e.g., when deciding whether “March comes earlier than April”) they may still use spatial knowledge to think about time in a way that is consistent with (and encouraged by) the particular metaphors popular in their language.

If one’s native language does have a long-term effect on how one thinks about time, then Mandarin speakers should be faster to answer purely temporal target questions (e.g., “March comes earlier than April”) after solving the vertical spatial primes than after the horizontal spatial primes. English speakers, on the other hand, should be faster after horizontal primes because horizontal metaphors are predominantly used in English. Since both English and Mandarin speakers completed the task in English, this is a particularly strong test of the effect of one’s native language on thought. If Mandarin speakers do show a vertical bias in thinking about time even when they are “thinking for English,” then language must play an important role in shaping speakers’ thinking habits.

EXPERIMENT 1

Method

Participants

Twenty-six native English speakers and 20 native Mandarin speakers participated in this study. All participants were graduate or undergraduate students at Stanford University and
received either payment or course credit in return for their participation. All of the Mandarin
speakers had Mandarin as their first language. It was also their only language until at least
the age of 6 years, with a mean age at the onset of English acquisition of 12.8 years.

Design

Participants answered spatial prime questions followed by questions about time. Primes
were spatial scenarios accompanied by a sentence description and were either horizontal (see
Fig. 3a) or vertical (see Fig. 3b). Targets were statements about time: either before/after state-
ments (e.g., “March comes before April”) or earlier/later statements (e.g., “March comes
earlier than April”). Each participant completed a set of 6 practice questions and 64 experi-
mental trials. Each experimental trial consisted of two spatial prime questions (both horizontal
or both vertical) followed by one target question about time. The experimental trials were
arranged such that the first prime question was FALSE, the second was TRUE, and the target
question was TRUE. Participants were not told that the experiment was arranged into such
trials, and because randomly arranged filler trials were extensively interspersed throughout
the experiment, participants were not able to figure out the trial structure in the course of the
experiment. Participants answered each target question twice—once after each type of prime.
The order of all trials was randomized for each participant. Overall, the experiment had a
fully crossed within-subject 2 (prime-type) × 2 (target-type) design with native language as
the only between-subjects factor.

Materials

A set of 128 primes and 32 targets, all TRUE/FALSE questions, was constructed.

Primes. One hundred twenty-eight spatial scenarios were used as primes. Each scenario
consisted of a picture and sentence below the picture. Half of these scenarios were about
horizontal spatial relations (see Fig. 3a), and the other half were about vertical spatial relations
(see Fig. 3b). Half of the horizontal primes used the “X is ahead of Y” phrasing and half
used the “X is behind Y” phrasing. Likewise, half of the vertical primes used the “X is
above Y” phrasing and have used the “X is below Y” phrasing. Primes were equally often
TRUE and FALSE. All of these variations were crossed into eight types of primes. In addition,
the left/right orientation of the horizontal primes was counterbalanced across variations.

Targets. Sixteen statements about the order of the months of the year were constructed.
Half used the spatiotemporal terms before and after (e.g., “June comes before August”), and
half used the purely temporal terms earlier and later (e.g., “August comes later than June”).
All four terms were used equally often. All target statements were “TRUE.”

Fillers. Sixteen additional statements about months of the year were used as fillers. These
statements were similar in all respects to the targets except that all of the filler statements
were “FALSE.” Filler statements were constructed by reversing the relation in each of the
target statements. Filler time questions (along with filler spatial scenarios drawn randomly
from the list of all spatial primes) were inserted randomly in-between experimental trials to
ensure that participants did not deduce the trial structure of the experiment. Responses to filler
trials were not analyzed.

Procedure

Participants were tested individually. All participants were tested in English with English
instructions. Questions were presented on a computer screen one at a time. For each question,
participants needed to respond TRUE or FALSE as quickly as possible (and within a 5-s
deadline) by pressing one of two keys on a keyboard. Response times were measured and
recorded by the computer. Participants received no feedback for the experimental trials.
Results

As predicted, English and Mandarin speakers were affected differently by the spatial primes. Both English and Mandarin speakers answered spatiotemporal before/after questions faster after horizontal primes than after vertical primes (see Fig. 4a). This confirms the earlier findings that spatial knowledge can be used in the online processing of spatiotemporal metaphors. However, when it came to purely temporal earlier/later questions, English and Mandarin speakers looked very different (see Fig. 4b). As predicted, English speakers answered purely temporal questions faster after horizontal primes than after vertical primes. This pattern was predicted by the preponderance of horizontal spatial metaphors used to describe time in English. The data from Mandarin speakers looked quite different. When answering questions phrased in purely temporal earlier/later terms, Mandarin speakers were faster after vertical primes than after horizontal primes. This pattern was predicted by the fact that in Mandarin vertical metaphors are often used to talk about time. Descriptive statistics and analyses are reported below.

Only responses to target time questions were analyzed. Response times exceeding the deadline and those following an incorrect response to a priming question and incorrect responses were omitted from all analyses (7% of all responses were omitted). Error rates did not differ by native language (7.1% for English speakers and 6.9% for Mandarin speakers) or prime type (7.3% after horizontal primes and 6.7% after vertical primes). Both English

![FIG. 4a. Experiments 1 and 3: Response times to spatiotemporal before/after questions about time following either a horizontal or a vertical prime are plotted for English speakers, Mandarin speakers, and English speakers who had been trained to talk about time vertically.](image-url)
FIG. 4b. Experiments 1 and 3: Response times to purely temporal earlier/later questions about time following either a horizontal or a vertical prime are plotted for English speakers, Mandarin speakers, and English speakers who had been trained to talk about time vertically.

and Mandarin speakers made slightly more errors on earlier/later targets (8.6%) than on before/after targets (5.4%), $\chi^2 = 4.82, p < .05$. Separate 2 (prime type) × 2 (target type) repeated-measures ANOVAs were conducted for data from English and Mandarin speakers.

Native English speakers. As predicted, Native English speakers answered time questions faster after horizontal primes (2128 ms) than after vertical primes (2300 ms), $F(1, 25) = 13.76, p < .01$. Reaction times were also shorter for questions phrased in before/after terms (2135 ms) than for those phrased in earlier/later terms (2294 ms), $F(1, 25) = 8.23, p < .01$. This difference is most likely due to an uninteresting difference in reading time between the two types of targets; earlier/later targets were one to two syllables longer than the before/after targets. There was no interaction between prime type and target type, $F(1, 25) = .75, p = .40$. English speakers were faster to solve all questions about time if they followed horizontal primes than if they followed vertical primes.

Native Mandarin speakers. Overall, Mandarin speakers answered time questions just as quickly after horizontal primes (2422 ms) as after vertical primes (2428 ms), $F(1, 19) = .01, p = .92$. However, there was a big difference in how primes affected response times to the two types of targets. Like the English speakers, Mandarin speakers answered the before/after target questions faster after horizontal primes (2340 ms) than after vertical primes (2509 ms). When it came to the purely temporal earlier/later targets, how-
ever, the pattern was exactly reversed. Unlike the English speakers, Mandarin speakers solved purely temporal targets faster after vertical primes (2347 ms) than after horizontal primes (2503 ms). These differences were confirmed as an interaction between prime type and target type, $F(1, 19) = 4.55$, $p < .05$.

Comparing English and Mandarin speakers. Overall, English speakers were not significantly faster to answer target questions than Mandarin speakers (2214 and 2425 ms respectively), $F(1, 44) = 2.01, p = .16$. The effect of prime was different for the two language groups; there was an overall effect of prime for English speakers but not for Mandarin speakers, $F(1, 44) = 4.89, p < .05$. The critical predicted difference between the two language groups was in the interaction of prime and target. This difference was confirmed as a three-way interaction in a $2_{\text{prime}} \times 2_{\text{target}} \times 2_{\text{language}}$ ANOVA, $F(1, 44) = 5.24, p < .05$.

Discussion

In this experiment, native English and native Mandarin speakers were found to think differently about time. This was true even though both groups were tested in English. English speakers were faster to verify that “March comes earlier than April” after horizontal primes than after vertical primes. This habit of thinking about time horizontally was predicted by the preponderance of horizontal spatial metaphors used to talk about time in English. The reverse was true for Mandarin speakers. Mandarin speakers were faster to verify that “March comes earlier than April” after vertical primes than after horizontal primes. This habit of thinking about time vertically was predicted by the preponderance of vertical time metaphors in the Mandarin. In short, it appears that habits in language encourage habits in thought. Since Mandarin speakers showed vertical bias even when thinking for English, it appears that language-encouraged habits in thought can operate regardless of the language that one is currently thinking for.

These results suggest that experience with a language can shape the way one thinks. Experiment 2 was designed to further test the relationship between language experience and patterns in thinking. How much and in what ways does learning new languages influence one’s way of thinking? Mandarin–English bilinguals were tested in a task similar to that described in Experiment 1. All of the participants were Mandarin–English bilinguals whose first language was Mandarin. In order to be able to assess the effects of second-language learning on thought, this group of participants was chosen to vary much more in how early in life they began to learn English than did the participants in Experiment 1. If learning new languages does change the way one thinks, then participants who learned English early on or had more English experience should show less of a “Mandarin” bias to think about time vertically.
EXPERIMENT 2

Method

Participants

Twenty-five Mandarin–English bilinguals (with varying degrees of experience with Mandarin and English) participated in this study. All participants were graduate or undergraduate students at Stanford University and received payment in return for their participation. Participants ranged in age from 18 to 28 years (M = 23.4 years, SD = 2.5 years). All participants had acquired Mandarin prior to English. They varied in the age at which they first began to learn English (Age of Acquisition) from 3 to 13 years of age (M = 9.4 years, SD = 3.3 years). All had at least 10 years of Exposure to English (current age minus Age of Acquisition) (M = 14.0 years, SD = 2.3 years).

Design

Just as in Experiment 1, participants answered spatial priming questions followed by target questions about time. Primes were spatial scenarios accompanied by a sentence description and were either horizontal (see Fig. 5a) or vertical (see Fig. 5b). Unlike Experiment 1, all targets were earlier/later statements about time (e.g., “March comes earlier than April”). Because the critical measure was the amount of vertical bias in response to the earlier/later targets, the before/after targets were not included in this experiment. Each participant completed 80 experimental trials and 240 filler questions. Each experimental trial consisted of two
spatial prime questions (both horizontal or both vertical) followed by one target question about time. Participants were not told that the experiment was arranged into such trials, nor did they figure it out in the course of the experiment. They answered each target question twice, once after each type of prime. The order of all trials was randomized for each participant.

Materials

A set of 96 primes and 40 targets, all TRUE/FALSE questions, was constructed.

Primes. Ninety-six spatial scenarios were used as primes. Each scenario consisted of a picture and sentence below the picture. Half of these scenarios were about horizontal spatial relations (see Fig. 5a), and the other half were about vertical spatial relations (see Fig. 5b). The left/right and up/down orientation in horizontal and vertical primes respectively was counterbalanced. Half of the primes used the “X will win” phrasing and half used the “X will lose” phrasing. Primes were equally often TRUE and FALSE. All of these variations were fully crossed.

Targets. Forty statements about the order of the months of the year were constructed. All of these statements used the purely temporal terms earlier and later (e.g., “March comes earlier than April”). Both terms were used equally often. All target statements were “TRUE.”

Fillers. Forty additional statements about months of the year were used as fillers. They were similar to the targets in all respects except they were “FALSE.” This was done to ensure that participants were alert and did not simply learn to answer “TRUE” to all questions about time. Filler time questions (along with filler spatial scenarios drawn randomly from the list of all spatial primes) were inserted randomly between experimental trials to ensure that participants did not deduce the trial structure of the experiment. Responses to filler questions were not analyzed.

Procedure

Participants were tested individually. All were tested in English with English instructions. The procedure was the same as in Experiment 1.

Results and Discussion

The bias to think about time vertically was greater for Mandarin speakers who started learning English later in life. Surprisingly, vertical bias appeared independent of the length of Exposure to English.

Vertical Bias was calculated for each participant by subtracting their mean RT for targets following a vertical prime from that for targets following a horizontal prime (mean Vertical Bias = 54 ms). Each participant also received a score on two predictor variables: Age of Acquisition of English and Years of Exposure to English. As before, response times exceeding the deadline, those following an incorrect response to a priming question, and incorrect responses were omitted from all analyses (10.9% of all responses were omitted). Error rates did not differ by prime type (10.7% after horizontal primes and 11.0% after vertical primes).

As predicted, the Age of Acquisition of English was positively correlated with Vertical Bias with \(r = .47, p < .01 \). Participants who started learning

\(^2\) There was one outlier participant with an unusually high vertical bias of 582 ms. The removal of this outlier only served to increase the correlation between Vertical Bias and Age of Acquisition to \(r = .50, p < .01 \).
English at a younger age showed less Vertical Bias (a less "Mandarin" way of thinking) than participants who started learning English later in life (see Fig. 6). That is, the longer a child was speaking only Mandarin, the greater his or her Vertical Bias score in English. Interestingly, the Length of Exposure to English did not predict Vertical Bias, $r = -.12, p = .29$. Acquiring thinking habits promoted by a language (assessed here as Vertical Bias) appears to depend primarily on how early one starts to learn that language and not on the amount of exposure to that language. This dissociation is particularly surprising since (as would be expected for college-age participants) the Age of Acquisition and the Length of Exposure were highly correlated, with $r = -.66, p < .01$.

The partial correlations between Vertical Bias and these two factors followed the same pattern as the full correlations. After controlling for the effect of Length of Exposure, there was still a strong correlation between Vertical Bias and Age of Acquisition, with $r = .52, p < .01$. There was still no significant correlation between Vertical Bias and Length of Exposure after the effect of Age of Acquisition had been controlled for, $r = .29, p = .17$.

These findings bear a conspicuous resemblance to those reported by Johnson and Newport (1989) regarding the acquisition of grammatical proficiency in a second language. In accord with the current results, grammatical proficiency in a second language is better the earlier the immersion in that language, but is nearly independent of the length of exposure to it (Johnson & Newport, 1989). It is striking that the acquisition of semantic biases (here
measured as Vertical Bias) is affected by the same variables as the acquisition of basic language skills like grammatical proficiency.

Participants were also asked to provide an intuitive rating of how often they “think in Mandarin” compared to English on a scale of 1 to 5 (1 = I think almost always in English to 5 = I think almost always in Mandarin). This introspective measure was also correlated with Vertical Bias, r = .37, p < .05, though not as strongly as Age of Acquisition. Once the effect of Age of Acquisition was controlled for, this introspective measure was no longer correlated with Vertical Bias, r = −.08, p = .36. It is reasonable to suppose that the Age of Acquisition is the causal variable driving both Vertical bias and this introspective assessment.

Overall, Mandarin speakers who learned English later in life were more likely to think about time vertically. The propensity to think about time vertically was related to the length of pure Mandarin experience (before any English was learned), but not to the length of English experience.

Although these results strongly suggest an effect of language on habitual thought, there is still one concern. The difference in time metaphors used in English and Mandarin is clearly not the only difference between English speakers and Mandarin speakers. Other cultural factors could conceivably have led to the observed differences. One important factor to consider is that of writing direction. Whereas English is written horizontally from left to right, Mandarin is traditionally written in vertical columns that run from right to left. Beyond writing direction, there may be many other cultural differences between native English and native Mandarin speakers that may have lead to the differences observed in Experiment 1. Experiment 3 was designed to minimize differences in nonlinguistic cultural factors while preserving the interesting difference in language.

In Experiment 3, native English speakers learned to use vertical spatial terms (above, below, higher than, and lower than) to talk about time. For example, they learned to say that “cars were invented above fax machines” and that “Wednesday is lower than Tuesday.” The use of the vertical terms above/below and higher than/lower than in this training was similar to the use of shang and xia in Mandarin. Earlier events were always said to be above or higher than, and later events were always said to be below or lower than. This training was designed to alter (temporarily) the English speakers’ habit of thinking about time horizontally by making the vertical metaphor highly available in memory. After the training, participants completed ex-

3 Although this difference is interesting, it cannot explain the results of Experiment 1. The writing direction explanation would predict that—since Mandarin is written vertically—Mandarin speakers should always be faster to answer time questions after vertical than after horizontal primes. This prediction was not borne out by data. Mandarin speakers showed an interaction (faster after vertical primes for earlier/later sentences, but faster after horizontal primes for before/after sentences) and not the main effect predicted by writing direction. Writing direction cannot be responsible for the differences observed in this experiment.
EXPERIMENT 3

Method

Participants

Seventy Stanford University undergraduates, all native English speakers, participated in this study for course credit.

Materials and Design

Participants were told they would learn ‘‘a new way to talk about time.’’ They were given a set of five example sentences that ‘‘used this new system’’ (e.g., ‘‘Monday is above Tuesday’’ or ‘‘Monday is higher than Tuesday’’) and had to figure out on their own how the system worked. The new system used above/below and higher than/lower than. Events closer to the past were always said to be above or higher than, and events closer to the future were always said to be below or lower than. Participants were then tested on a set of 90 questions that used these vertical terms to talk about time (e.g., ‘‘Nixon was president above Clinton’’ or ‘‘WWII happened lower than WWI’’). These test questions were presented on a computer screen one at a time, and participants responded TRUE or FALSE to each statement by pressing one of two keys on the keyboard.

Half of the participants learned a system that used the terms above and below, and half learned a system that used higher than and lower than. Two different training systems were used in order to equate syntactic similarity between the training phrases and the two types of targets used in this experiment. The above/below phrasings were syntactically similar to the before/after targets, and the higher than/lower than phrasings were similar to the earlier than/ later than targets. This was done to make sure that any differential transfer from the training phase to the experiment would not be due to simple syntactic priming.

Immediately after the training, participants went on to complete the experiment described in Experiment 1. After the initial training, all materials, instructions, and procedures were identical to those used in Experiment 1.

Results and Discussion

After the short training, results of native English speakers looked more like those of Mandarin speakers than those of untrained English speakers. Results are summarized in Fig. 4.

Unlike untrained English speakers in Experiment 1, trained English speakers were not faster to answer time questions after horizontal primes (2151 ms) than after vertical primes (2170 ms), $F(1, 68) = .53, p = .47$. However, just as was the case with Mandarin speakers, primes affected response times differently for the different targets. For before/after targets, response times were shorter after horizontal primes (2040 ms) than after vertical primes (2156 ms). For purely temporal earlier/later targets, however, the pattern...
was exactly reversed; response times were shorter after vertical primes (2185 ms) than after horizontal primes (2262 ms). These differences were confirmed as an interaction between prime type and target type, \(F(1, 68) = 10.25, p < .01 \).

There were no differences between the two training types. This confirms that the effect of training was not simply that of syntactic priming. Also, just as observed for untrained English speakers, response times were shorter for questions phrased in before/after terms (2098 ms) than for those phrased in earlier/later terms (2223 ms), \(F(1, 68) = 11.03, p < .01 \). As before, this difference is most likely due to an uninteresting difference in reading time between the two types of targets; earlier/later targets were one to two syllables longer than the before/after targets.

Comparing Trained and Untrained English Speakers

Mean response times did not differ between trained and untrained English speakers, but the effect of prime was different for the two groups; there was an overall effect of prime for untrained English speakers but not for trained English speakers, \(F(1, 94) = 4.69, p < .05 \). The critical predicted difference between the two groups was in the interaction of prime and target. This difference was confirmed as a three-way interaction in a \(2^{\text{prime}} \times 2^{\text{target}} \times 2^{\text{training}} \) ANOVA, \(F(1, 94) = 5.65, p < .05 \). These are the very same differences as were observed between English and Mandarin speakers in Experiment 1.

Comparing Trained English Speakers and Mandarin Speakers

Overall, trained English speakers answered targets faster than Mandarin speakers (2161 and 2425 ms respectively), \(F(1, 88) = 4.68, p < .05 \). This was the only difference between the two groups. None of the differences observed between English speakers and Mandarin speakers in Experiment 1 were present after English speakers had been trained to talk about time in a “Mandarin” way.

Overall, English speakers who were trained to talk about time using vertical terms showed a pattern of results very similar to that of Mandarin speakers. These results confirm that, even in the absence of other cultural differences (e.g., writing direction), differences in talking do indeed lead to differences in thinking.

GENERAL DISCUSSION

One’s native language appears to exert a strong influence over how one thinks about abstract domains like time. In Experiment 1, Mandarin speakers relied on a “Mandarin” way of thinking about time even when they were thinking about English sentences. Mandarin speakers were more likely to think about time vertically when deciding whether “March comes earlier than April.” This result is predicted by the way Mandarin talks about time;
the fact that vertical terms are commonly used to talk about time predicts that Mandarin speakers would find it more natural to construct a vertical time line when thinking about purely temporal relations. English speakers were more likely to think about time horizontally because horizontal spatial terms predominate in English temporal descriptions.

Experiment 2 showed that the acquisition of semantic biases (such as a habit of thinking about time vertically or horizontally) decreases with the age at which second-language exposure begins. Further, the acquisition of semantic biases is affected by the same variables as the acquisition of basic language skills.

In Experiment 3, native English speakers who had just been briefly trained to talk about time using vertical terms produced results very similar to those of Mandarin speakers. This finding confirms that the effect observed in Experiment 1 was driven by differences in language and not by other cultural differences. Learning a new way to talk about a familiar domain can change the way one thinks about that domain. Taken together these findings make a strong case for language shaping habitual thought.

However, there is an interesting discrepancy between the findings described here on time and those of Rosch and colleagues on color. Why would there be such strong evidence for universality in thought for domains like color perception, but quite the opposite for time? One possibility is that—since color perception predates language both in evolution and in development—children’s perceptually based concepts (like colors) may be relatively fixed before they learn language.

A second possibility is that language is most powerful in determining thought for domains that are more abstract, that is, ones that are not so reliant on sensory experience. Gentner and Boroditsky (2001) have argued that the effect of language should be most apparent in the conceptualization of relations (typically encoded by verbs and spatial prepositions) as opposed to objects. Whereas object-concepts are easily individuable from perceptual experience, learning the extent and generality of a relational concept requires considerable experience with language. In one study, adults watched silent films of mothers talking to their children and tried to guess what was being said (Gillette, Gleitman, Gleitman, & Lederer, 2001). Given only the silent film, adult participants were able to correctly guess nouns three times more often than verbs (45 and 15% correct respectively). Further, concrete activity verbs like “push” were much more easily guessed from silent observation than from the syntactic frames in which they were used (50 and 15% respectively), whereas verbs that denote more abstract activities like “think” were much more easily guessed from syntax than from observation (90 and 0% respectively).

In general, the referents of abstract terms are difficult or impossible to pick out just from observing the context in which they are used. Imagine trying to learn to pick out instances of “idea,” “tomorrow,” or “justice”
just from immediate interaction with the physical world. One consequence of this is that, in acquiring their first language, children take longer to learn relational terms than object-reference terms (because more language experience is needed to parcel out relational concepts) (Au, Dapretto, & Song, 1994; Gelman & Tardif, 1998; Gentner, 1982; Gentner & Boroditsky, 2001; Macnamara, 1972; Nelson, 1973). Another consequence is that the lexicalization of abstract and relational concepts varies cross-linguistically much more than that of concrete object concepts. It appears that acquiring abstract concepts requires experience with language and that the eventual form of these concepts is largely shaped by the language experience.

But how does language affect thought? Let us again consider the domain of time. How do spatiotemporal metaphors affect thinking about time? Spatial metaphors can provide relational structure to those aspects of time where the structure may not be obvious from world experience (Boroditsky, 2000). In the case of space and time, using spatial metaphors to describe time encourages structural alignment between the two domains and may cause relational structure to be imported from space to time. The mechanism for this type of metaphoric structuring may be the same as that used in analogical inference (Gentner, Bowdle, & Wolff, 2001; Gentner & Wolff, 1997). Language-encouraged mappings between space and time come to be stored in the domain of time. Hence, when spatiotemporal metaphors differ, so may people’s ideas of time.

Language can be a powerful tool for shaping abstract thought. When sensory information is scarce or inconclusive (as with the direction of motion of time), languages may play the most important role in shaping how their speakers think.

REFERENCES

(Accepted June 10, 1999, published online May 3, 2001)