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Competition in Spoken Word Recognition:
Spotting Words in Other Words

James M. McQueen, Dennis Norris, and Anne Cutler

Although word boundaries are rarely clearly marked, listeners can rapidly recognize the individual
words of spoken sentences. Some theories explain this in terms of competition between multiply
activated lexical hypotheses; others invoke sensitivity to prosodic structure. We describe a
connectionist model, SHORTLIST, in which recognition by activation and competition is
successful with a realistically sized lexicon. Three experiments are then reported in which listeners
detected real words embedded in nonsense strings, some of which were themselves the onsets of
longer words. Effects both of competition between words and of prosodic structure were observed,
suggesting that activation and competition alone are not sufficient to explain word recognition in
continuous speech. However, the results can be accounted for by a version of SHORTLIST that is

sensitive to prosodic structure.

To understand a linguistic message, a listener or reader must
recognize the individual words in that message. In one respect,
the reader has a distinct advantage over the listener in this
task. The spaces between written words are clearly marked on
the printed page, giving the reader unambiguous cues to the
location of word boundaries. Spoken language, however, does
not cue the listener in a similar way; word boundaries are not
reliably marked (Lehiste, 1972; Nakatani & Dukes, 1977).
However, the continuous speech signal is nevertheless per-
ceived as a discontinuous string of words. How is this lexical
parse obtained?

Three answers to this question have been suggested in the
literature. One is that words are recognized in sequential
order, as they occur in the stream of speech. Another is that
there is some explicit mechanism that identifies, on the basis of
sublexical information, points in a speech stream that are likely
to be word boundaries. The third is that word recognition is
achieved by a process of interword competition.

Sequential Recognition

Certain models of spoken word recognition propose that
words are recognized in sequential order. The suggestion is
that the onset of the next word can be accurately located when
the current word has been recognized successfully (Cole &
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Jakimik, 1978, 1980; Marslen-Wilson & Welsh, 1978). Accord-
ing to this argument, some words become unique before their
offsets. Thus, if a listener hears trespass, for example, once the
first five phonemes /tresp/ have been recognized, the only
word that the string can become is trespass. The claim is that
the onset of the next word must thus occur after /pas/. Such
models therefore do not need an explicit mechanism for
locating word boundaries; boundaries emerge as a by-product
of the recognition process.

The success of these sequential models depends on the pro-
portion of words becoming unique before their offset. Distribu-
tional evidence does not, however, favor such models. Luce
(1986a) computed the uniqueness point (the point at which a
word diverges from all other words) of each word in a 20,000
word dictionary and found that 60% of these words diverged
before their final phoneme. However, the most frequent words
in the language are shorter words, which tend to become
unique only after their offsets. When word frequency was
taken into account, the probability of a word becoming unique
on its last phoneme was .23, and the probability of a word
becoming unique before its last phoneme was only .39. The
consequence of these statistics is that more than a third of
words encountered will only be recognizable after the listener
has heard part of the following word. McQueen and Cutler
(1992) have further shown that a majority of polysyllabic words
in English have shorter words embedded within them and
that—particularly problematic for sequential models—a major-
ity of such embeddings occur at the onset of the polysyllabic
words. Frauenfelder (1991) has also found a considerable
degree of lexical embedding in a statistical analysis of the
Dutch vocabulary.

Shillcock (1990) has pointed out another weakness of
sequential models. Because of suffixation, words like trespass
do not become unique before their offset: trespassing, tres-
passes, trespassed, and trespasser are all viable candidates.
Recognition of trespass, or of one of these suffixed forms,
cannot be achieved until the arrival, or nonarrival, of the affix.
Where there is no affix, recognition must thus be delayed until
the onset of the following word.

Experimental evidence also argues against sequential recog-
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nition. Grosjean (1985) and Bard, Shilicock, and Altmann
(1988) have shown with the gating task in continuous speech
(where subjects hear successively longer and longer parts of a
sentence) that many words can only be recognized after the
onset of the following word. Clearly, the strongest version of
the sequential processing hypothesis is untenable: Continuous
word recognition cannot depend on recognition of every word
before its acoustic offset.

In response to criticisms such as these, Marslen-Wilson
(1987) has argued that a solution can be provided by the use of
higher level information in the word recognition process. The
process of retrieval from lexical storage (the “access function”;
Marslen-Wilson, 1987) may in fact occur very early (perhaps
200 ms after word onset; Marslen-Wilson, 1973). Retrieval
will, however, provide multiple lexical candidates; contextual
(syntactic, semantic, and pragmatic) information will act to
speed up the process of lexical selection such that monosyllabic
or suffixed words can be recognized before their uniqueness
points. In Marslen-Wilson’s cohort model (Marslen-Wilson &
Welsh, 1978), as in other interactive models of word recogni-
tion, word recognition can be substantially affected by top-
down feedback from syntactic and semantic processing levels.
However, words that do not become unique until after their
offset can occur in neutral contexts or can be contextually
anomalous. For these reasons, it has been argued that contex-
tual information cannot be relied on to provide a boost to the
recognition process (Norris, 1982).

Explicit Segmentation

A very different approach to word recognition in continuous
speech is provided by models that postulate an explicit process
of lexical segmentation. The focus in this case is on where word
boundaries are likely to be and, thus, on where in the signal it is
appropriate to initiate lexical access. Such models make claims
about how lexical access can be more efficient if possible
word-boundary locations can be identified before lexical access.
Cross-linguistic analyses (Cutler, Mehler, Norris, & Segui, 1986;
Otake, Hatano, Cutler, & Mehler, 1993), particularly those
with bilingual subjects (Cutler, Mehler, Norris, & Segui, 1992),
have suggested that although these segmentation strategies
vary across languages, they do have something in common:
They are all based on prosodic structure.

Cutler and Norris (1988; see also Cutler & Carter, 1987)
have proposed a Metrical Segmentation Strategy for stress-
timed languages like English, which are characterized in terms
of strong and weak syllables. Strong syllables are defined as
those that contain a full vowel, and they are contrasted with
weak syllables, which contain reduced vowels, usually schwa. A
syllable is considered strong whether it carries the primary
stress or only a secondary stress in a word. The Metrical Seg-
mentation Strategy assumes that strong syllables trigger segmen-
tation of speech. It claims that strong syllables are points in the
speech signal at which lexical access is initiated because they
are the most likely locations of content word onsets. The
speech stream is thus segmented in the sense that the metrical
segmentation strategy postulates word boundaries within it.

As Norris and Cutler (1985) have pointed out, segmentation
does not require classification. A fully categorized prelexical

parse of the speech input into phonemes, syllables, or any
other nonlexical unit is not necessary for the operation of the
Metrical Segmentation Strategy. All that is required for the
strategy is a prelexical mechanism that can detect strong
syllables and initiate lexical access at these locations. The
Metrical Segmentation Strategy is consistent both with models
that classify the signal prelexically and with models in which
lexical access is based on a raw acoustic representation (Cutler
& Norris, 1988).

A word-spotting task has provided evidence supporting the
Metrical Segmentation Strategy (Cutler & Norris, 1988). In
that experiment, listeners were asked to listen to bisyllabic
nonsense strings and to press a button if they heard a real word
embedded at the beginning of these nonsense strings. It was
found that monosyllabic words embedded as the first (strong)
syllables of the strings were more difficult to detect when the
second syllable was also strong (e.g., mint in /minteif/) than
when the second syllable was weak (e.g., mint in /mintof/). It
was argued that the second syllable of /minteif/, being strong,
was segmented from the first, and thus that mint had to be
assembled across a segmentation boundary. Detection of mint
in a strong-weak (SW) item was easier because the weak
second syllable did not trigger segmentation.

Analyses of both natural and laboratory-induced mispercep-
tions of speech (Cutler & Butterfield, 1992) indicate that
listeners tend to assume that strong syllables are the onsets of
words (the onsets of content words, to be more precise). The
principal claim of the Metrical Segmentation Strategy, that
content words are likely to begin at strong syllables, is thus
supported by converging evidence from different tasks. Further-
more, such a strategy is appropriate for English: Cutler and
Carter (1987) found that more than 90% of content words in a
corpus of conversational English began with strong syllables.

Interword Competition

Another solution to the continuous speech problem has
been provided by models of spoken-word recognition invoking
mechanisms of competition. Like sequential recognition mod-
els, these models achieve early recognition when this is
possible (i.e., with a word with an early uniqueness point);
however, they avoid the strong claim that words must be
recognized in strict sequential order. The TRACE model
(McClelland & Elman, 1986) is of this type. In TRACE,
continuous word recognition is achieved by a lexical competi-
tion process. Word nodes are activated on the basis of
available bottom-up information. By a process of lateral
inhibition, words beginning from the same point compete with
each other. Competition between the cohort of words that
share initial portions is also assumed in the (sequential) cohort
model (Marslen-Wilson, 1987, 1990; Marslen-Wilson & Welsh,
1978). In TRACE, however, there is an additional type of
competition. Words beginning at different points in time also
compete for control of the same input segments. Thus, given
the input /katslog/, the candidates cat and catalogue will
compete for the initial three phonemes, whereas log and
catalogue will compete for the final three phonemes.

Competition between candidates straddling different parts
of the input string in effect provides a mechanism for word
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recognition (see Bard, 1990; Frauenfelder & Peeters, 1990,
1992). McClelland and Elman (1986) provided some worked
out examples. Thus, if TRACE is given a string like /barti/,
competition occurs between the word nodes for bar, an, and
tea. The parse bar tea is chosen, and activation of art is
suppressed, because only bar tea allocates all the input pho-
nemes to words, with no phonemes left over (see Figure 28 of
McClelland & Elman, 1986, p. 63).

However, the architecture of TRACE is implausible. The
rationale for competition is that words can potentially begin
anywhere in the input stream. In TRACE, the ubiquity of
potential onset locations is dealt with by duplicating lexical
networks so that there is a complete lexical network aligned
with each point in the input where a word might begin. Thus,
to recognize all possible words in an input stream 50 phonemes
in length, TRACE would require 50 complete lexical networks.
Furthermore, lexical nodes in nearby lexical networks would
need to be connected by inhibitory links so that overlapping
words inhibit each other. The total number of connections
required is enormous.

In the SHORTLIST model (Norris, in press), the problem
of duplicating lexical networks is avoided by separating the
process of competition from the process of recognizing poten-
tial lexical candidates. SHORTLIST has two distinct stages. In
the first stage, all potential lexical candidates beginning at
every phoneme in the input are generated in a completely
bottom-up fashion. This stage need not take account of
whether or not candidates overlap. These shortlisted candi-
dates are wired into a small interactive activation network that
functions like the lexical level of TRACE. The candidate
words in this small competitive network then compete for
recognition. Because competition is limited to a small candi-
date set, the model copes well with a large lexicon of over
25,000 words.

The initial stage of the SHORTLIST model, which gener-
ates lexical candidates, clearly has a complex task to perform.
In a current implementation of the model (Norris, in press)
this first stage consists simply of an exhaustive dictionary
search procedure that can produce all possible lexical candi-
dates. However, this process of generating lexical candidates
could also be performed by a system much like the simple
recurrent network studied by Norris (1990, 1992). Norris
demonstrated how a three-layer back-propagation network
with recurrent connections could be trained to recognize
words in continuous input and could simulate many of the
characteristics of human spoken word recognition. However,
although recurrent networks can identify words from continu-
ous input without the duplication of lexical networks required
by TRACE, they are unable to parse input reliably. For
instance, these networks would detect cat, log, and catalogue
given the input /kaetalpg/, but they would not be able to select
from among such alternatives because there is not a mecha-
nism for this. The lexical competition network in SHORTLIST
provides exactly such a mechanism.

Finally, recent studies of spoken word recognition have
provided evidence for competition effects in the human lis-
tener. Experiments with the cross-modal priming task (Swin-
ney, 1979), for example, have suggested that multiple lexical
entries may be activated when a word is presented (Marslen-

Wilson, 1987, 1990; Shillcock, 1990; Swinney, 1981; Zwitser-
lood, 1989). Further evidence for activation and competition
comes from results indicating that the recognition of a spoken
word depends on its frequency of occurrence and its similarity
neighborhood, that is, on the number and frequency of
occurrence of phonetic neighbors (see Luce, Pisoni, & Gold-
inger, 1990, for a review).

Reconciling Alternative Approaches

There is at least some experimental evidence in favor of all
three approaches that we have outlined. Early recognition of
words with early uniqueness points suggests support for
sequential recognition. Prosodic effects on segmentation sug-
gest that spoken word recognition is influenced by the prosodic
structure of the input language through a possible explicit
procedure of segmentation. Evidence for multiple activation of
word candidates in spoken word recognition suggests that
recognition involves a process of activation and competition.

Moreover, in some respects the three types of approaches
are not incompatible with one another. First, competition
models such as TRACE and SHORTLIST incorporate a ver-
sion of sequential processing. When the evidence in the input
strongly supports a unique lexical entry, the model will be
highly likely to parse the string with a word boundary at the
end of this word, and the effect of this will be that words be-
ginning immediately after the juncture will be advantaged. Thus,
on words with early uniqueness points, competition models will
operate in a way analogous to sequential recognition models.

It is important to note, however, that competition models do
not depend on a sequential mechanism. They can cope just as
well with words that do not become unique before their offsets.
Thus, the apparent sequential recognition produced by compe-
tition models with certain forms of input should perhaps be
thought of merely as an aspect of the more general mechanism
of lexical competition. As we have argued, sequential recogni-
tion will in fact not work with most words; it might therefore be
argued that early recognition of words with early uniqueness
points could just as well serve as evidence in favor of competi-
tion models.

Second, an activation—competition model such as SHORT-
LIST is clearly compatible with explicit segmentation strate-
gies such as the Metrical Segmentation Strategy. The Metrical
Segmentation Strategy stipulates where in the signal lexical
access should occur; SHORTLIST assumes that lexical access
should be considered as the activation of word hypotheses and
that word recognition is based on competition between these
candidates. In SHORTLIST terms, then, the Metrical Segmen-
tation Strategy can be viewed as a factor that either determines
which lexical candidates should be activated or influences acti-
vation levels so that competitors beginning at strong syllables
enjoy an advantage. In the first of these alternatives, the
Metrical Segmentation Strategy would act to initiate lexical
access at strong syllables, and thus not every phoneme in the
input would be treated as a possible word onset. In the second
alternative, the access component of SHORTLIST would be
unaffected, and the Metrical Segmentation Strategy would
operate as a bias in the competition process. In either case,
however, it is clear that the central claim of the Metrical
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Segmentation Strategy, that lexical access is more likely to be
successful at strong syllables, can easily be incorporated in the
competition framework of SHORTLIST.

What remains unclear, however, is whether both of these
approaches are necessary for an adequate account of continu-
ous speech recognition. It is possible, for example, that some of
the evidence taken as support for the Metrical Segmentation
Strategy could be accounted for by mechanisms of lexical
competition. Indeed, Cutler and Norris (1988, p. 120) have
suggested that the difficulty of detecting mint in /mnterf/ may
in part be due to competition of lexical hypotheses.

The present study was undertaken to address this question.
First, we tested the mechanisms of activation and competition,
as instantiated in SHORTLIST, by examining competition
between words beginning both at the same and different points
in the signal. Second, we manipulated prosodic factors to test
for effects predicted by the Metrical Segmentation Strategy.

The task chosen was the word-spotting task developed by
Cutler and Norris (1988), as just described. In Cutler and
Norris’s study, the embedded words always appeared at the
beginning of the nonsense strings. In Experiment 1, however,
target words could appear at either the beginnings or the ends
of the strings. The crucial manipulation was whether or not the
strings were themselves the beginnings of longer real words.
Targets, such as mess, could appear as the second syllable of
word onsets like /domes/ (the beginning of domestic) or
matched items such as /names/ (which does not begin a word).
Competition between words beginning together was also
tested by using SW pairs such as /szkrof/ (the onset of
sacrifice) and /sekrok/ (a nonword onset).

The competition prediction is straightforward: Activation of
domestic should make it more difficult to detect the target mess
in /domes/ than in /names/, in which there is no long
competitor word. In the weak—strong (WS) strings, the task
thus tests for competition between words beginning at differ-
ent parts of the string. Likewise, competition predicts that it
should be more difficult to detect sack in /sakrof/ than in
/sekrok/. Here, the task tests for competition in words
beginning in the same way.

The Metrical Segmentation Strategy makes no predictions
about competition effects for items with the same stress
pattern, but it does predict a main effect of stress pattern: that
word-spotting should be easier for WS items than for SW
items. The Metrical Segmentation Strategy predicts that lexi-
cal access should be initiated at strong syllable onsets.Thus, for
a WS item, lexical access should occur at the second (strong)
syllable, the target word, segmenting the item at the appropri-
ate point for target detection. In contrast, lexical access should
occur at the first syllable and not at the second (weak) syllable
of an SW item. There will therefore be no internal segmenta-
tion of SW items, making target detection more difficult.

Experiment 1

Method

Subjects. Thirty-four student volunteers were paid for their partici-
pation. Most of the subjects were members of King's College,
Cambridge, United Kingdom. There were 21 women and 13 men, all
between 18 and 30 years of age.

Materials. The materials consisted of two sets of 36 yoked triplets
of bisyllables. Items in the first of these sets had embedded targets:
monosyllabic words that were either the first or the second syllable of
the item. One item (“word onset”} in each triplet was the first two
syHables of a polysyllabic word. One half of the word onsets consisted
of a weak syllable followed by a strong syllable (WS), where the target
word appeared in the second syllable (e.g., /domes/, the onset of
domestic, with the target mess). The other word onsets consisted of a
strong followed by a weak syllable (SW), where the target word
appeared in the first syllable (e.g., /saekrof/, the onset of sacrifice, with
the target sack). The other two items (“nonword onsets”) in each
triplet contained the same target word but could not be continued to
form words. One nonword onset in each triplet had a WS stress
pattern, the other nonword onset had a SW pattern. The 18 triplets of
each type (i.e., on the basis of WS or SW word onsets) are listed in the
Appendix.

The structure of the language made it impossible to use fully
matched quadruplets; that is, where the same target word appeared as
the strong syliable of two WS and two SW items, with one of each being
the onset of a real word (only a few such sets can be constructed, e.g.,a
set for come: /ankam/, encumber; /trokam/; /kampsn/, company; and
/kampag/). The partially between-items design was therefore adopted,
with both WS and SW word onsets yoked to nonword onsets of both
stress patterns (e.g., WS word onset /domes/ with WS nonword onset
/names/ and SW nonword onset /mestom/, and SW word onset
/sekraf/ with SW nonword onset /sekrok/ and WS nonword onset
/Klaszk/). Thus, there was only one set of word onsets of each stress
pattern, but two sets of nonword onsets of each stress pattern. Items in
one of these sets of nonword onsets (“matched”) contained the same
target words as the word onsets with that stress pattern (e.g., WS
/names/ matched with /domes/, and SW /szkrok/ matched with
/sakraf/). In items from the other set (“unmatched”), the target
words were not the same as those in the word onsets with that stress
pattern (e.g., WS /kloszk/ not matched to /domes/, and SW /mestom/
not matched to /sakrof/). In other words, the unmatched WS
nonword onsets contained the targets used in the SW word onsets, and
vice versa.

There were two important constraints on the choice of these
materials. First, there had to be only one embedded word in each item.
For example, the string/dorarz/ has the word rise as its second syllable,
but the words rye, eve, and eyes are also possible word targets. Second,
it was hoped that there would be only one embedding word, such that
the word-onset materials could only be completed in one way. This
constraint proved impossible to satisfy, so a weaker criterion was
adopted. A word-onset string was accepted if it could be completed by
only one set of morphologically related words. Thus, /fslos/ was
accepted, although it could be completed as philosopher, philosophize,
and philosophy (and further inflections). These constraints made it
difficult to generate a fully balanced set of materials. For example, it
was impossible to match the frequency of occurrence of either the
target words or the embedding onsets (i.e., of domestic and sacrifice)
across the two subsets of 18 target-bearing triplets. However, the
frequencies listed in the Appendix (from Francis & Kulera, 1982)
show that the words were at least chosen from overlapping frequency
distributions.

Another constraint that proved difficult to satisfy involved the
syllabification of the embedding words. We wanted to select items in
which the embedded target exactly matched the syllabification of the
embedding word. This was not problematic for the WS items because
the medial consonants in a WS string clearly belong to the second,
strong syllable (under the principle of maximal onset, Selkirk, 1982).
There is, however, a problem with SW items because there is little
consensus on the correct syllabification of such items. Different
linguistic theories make different claims (cf., e.g., Pulgram, 1970;
Selkirk, 1982; Kahn, 1976), and listeners, although showing certain sys-
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tematic patterns, are far from being in agreement on syllabification
either (Treiman, Gross, & Cwikiel-Glavin, 1992; Treiman & Zukowski,
1990). Some words are fairly unambiguous, however. Phonotactic
constraints mean that certain phonemic sequences cannot be syllable-
internal. Thus, the first syllable of hypnotize is the word hip because the
sequence /pn/ cannot form a syllabic coda or onset. Items of this type
were chosen if possible. Furthermore, monosyllabic English words
with lax vowels have to be closed syllables, ending with at least one
consonant (i.e., lax vowels do not occur in words of open consonant—
vowel structure; Fudge, 1987). Thus, all target words we used (except
arm) had lax vowels. The medial consonants in such items should
therefore have been syllabified as part of the first syllable if that
syllable was viewed in isolation (e.g., /hem.as/ rather than /he.mas/
because /hem/ is a possible syllable, whereas /he/ is not). The SW
items were therefore highly consistent, if somewhat less well con-
strained in their syllabification than the WS items.

The second set of 36 triplets is also listed in the Appendix. These
were fillers in which there were no embedded word targets. They were
structured in the same way as the target-bearing items such that the
same monosyllabic nonword appeared in three embedding strings, one
of these strings being the onset of a real word (e.g., /folis/, the onset of
felicity) and the other two strings not being the onsets of real words, but
varying in stress pattern, consisting of one WS item {(e.g., (kalis/) and
one SW item (e.g., /lisal/). Eighteen of the triplets had WS word
onsets (/falis/); the other 18 had SW word onsets (e.g., /dzaeval/, the
onset of javelin). As with the target-bearing items, the embedding word
strings were selected so that the cohort of completions were all
morphologically related.

An additional set of 18 items were selected. There were 9 WS items
and 9 SW items; 9 were the onsets of words and 9 contained target
words. These were used to construct a practice tape of 12 items, and as
the first 6 items in the experimental run, as further warm-up materials.

Simulations. The experimental predictions of lexical competition
were confirmed for the materials by simulation. The simulations were
performed with SHORTLIST operating on a 26,450-word subset of
the Longman Dictionary of Contemporary English (Procter, 1975). Note
that although large-vocabulary simulations of this nature can easily be
performed with SHORTLIST, they are beyond the scope of current
implementations of TRACE. TRACE is normally limited to less than
1,000 words and uses only a subset of the English phoneme inventory.
SHORTLIST has the additional advantage of being a completely
bottom-up system in which there is no feedback from the lexical to the
phonemic level.

For the simulations, each target-bearing item in the materials was
transcribed and used as input to the model. Performance on the
different classes of material was compared at “time slices” (i.e., for
each additional phoneme) moving through the items, and for up to
four time slices of silence after item offset. In four of the unmatched
SW nonword onsets, -er suffixed words (wrecker, robber, fisher, and
ticker) won out in the competition process, markedly reducing the
activation of the target monosyllables (wreck, rob, fish, and tick). These
four items were removed from the simulation (in fact, polysyllabic
words were hardly ever spotted by subjects either in the present
experiments or in previous studies with this task). The simulations
were run with the eight default parameters specified in Norris (in
press). The mean activation functions for the targets in WS items, and
the embedding words in the appropriate subset of these items, are
shown in Figure 1; those for the targets and embedding words in the
SW items are shown in Figure 2.

The competition effects can be seen by comparing the activation
levels of the target words. In WS items, targets in word onsets have a
lower level of activation than those embedded in nonword onsets (e.g.,
mess in /domes/ vs. /nomes/). This effect is only present near the offset
of the target word (C in Figure 1). It is clear that it is due to the high
activation of the embedding word (e.g., domestic) given the word-onset

items. The embedding word did not enter the candidate set for any of
the WS matched nonword-onset items (e.g., domestic was not consid-
ered given the input /nemes/). The activation functions for targets in
the matched and unmatched WS nonword onsets are thus indistinguish-
able (cf. mess in /names/ and sack in /klasek/).

In SW items, however, targets have equivalent levels of activation in
word onsets and matched nonword onsets (e.g., sack in /szkrof/ vs.
/sekrak/) at the offset of the target (C in Figure 2). This is because the
embedding words did enter the candidate set for the matched SW
nonword onsets. The activation functions for targets in word onsets
and matched nonword onsets only diverge later. Thus, SHORTLIST
predicts differences in target detection in SW items between word
onsets and matched nonword onsets (e.g., sack in /szkraf/ and
/szkrak/), but that these should be smaller than, or emerge later than,
those in WS items. SHORTLIST also predicts differences in target
detection in SW matched and unmatched nonword onsets (€.g., sack in
/sekrok/ and mess in /mestam/). The matched nonword onsets
tended to differ from the word onsets only in their final phoneme (see
Appendix), and therefore became nonwords later than the unmatched
nonword onsets. As a result, the activation levels of targets in
unmatched nonword onsets are higher than those in matched word
onsets. However, the model predicts that, over time, when the
difference in activation between targets in SW word onsets {e.g., sack
in /sxkraf/) and SW matched nonword onsets (¢.g., sack in /sakrok/)
is large, the difference between SW matched and unmatched non-
words (e.g., sack in /sekrok/ and mess in /mestom/) is smail, and vice
versa (see Figure 2).

Design and procedure. Three experimental tapes were constructed,
each beginning with the 6 warm-up items and having the same running
order of the 72 embedded strong syllables (36 word targets plus 36
nonword fillers). The strings in which these syllables were embedded
were counterbalanced across the three tapes. Thus, for example, the
first target in each tape was dead. On Tape 1, this target was embedded
in /dedal/, on Tape 2 in /dedak/, and on Tape 3 in /gaded/. Each tape
contained 12 target-bearing items that were word onsets (6 WS and 6
SW), 12 target-bearing 'WS items that were nonword onsets (half
matched and half unmatched), and 12 target-bearing SW items that
were nonword onsets (again, half from each subset). This counterbal-
ancing was repeated for the set of nonword fillers. One half of the
items on each tape contained targets, and targets were equally likely to
occur in the first or second syllable. One half of the items that were
word onsets contained embedded targets, and the other half did not.

The practice tape and the three experimental tapes were recorded
by a male native speaker of British English in a sound-damped booth,
onto the left channel of a digital audiotape. The items were spoken at
the rate of one every 3 s. Timing pulses were placed on the right
channel of this tape, aligned approximately with item onset. Before the
data analysis, each item was digitized (sampling at 10 kHz with 12-bit
A/D conversion) and examined using a speech editor. For each item,
three measurements were made: the time between the timing pulse
and target (strong syllable) onset, strong syllable length, and item
length.

Subjects were tested separately in a quiet room. They were told that
they would hear a list of nonsense words, presented individually and
that they were to press the button in front of them as quickly as
possible if the nonsense word began or ended with any real word and
then say aloud, into a microphone, the word that they had spotted.
These verbal responses were recorded onto audiotape. The target
words were not given to the subjects in advance. The manual responses
were made with a finger of the subject’s preferred hand. These
reaction times were collected by a microcomputer, with responses
measured from the timing pulses (which were inaudible to the
subjects). Subjects heard the items binaurally, over headphones. All
subjects were given the same practice tape, followed by one of the
three experimental tapes. The experiment took less than 10 min to run.
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Figure 1.

Mean activation levels of target words and embedding words given the weak—strong items, over

time slices, in SHORTLIST. Filled symbols show activation of targets embedded in word onsets (circles;
€.g., mess in /domes/, the onset of domestic), in nonword onsets matched to word onsets (squares; e.g.,
mess in /names/), and in unmatched nonword onsets (triangles; e.g., sack in /klasaek/). Open circles show
the activation of the embedding words in the word-onset items (¢.g., domestic in /domes/). The time slices
are marked to indicate the alignment of the activation functions relative to the last consonant of the target
word (C). Slices before C are for each phoneme working back through each item; slices after C contained

silence markers.

Results and Discussion

The verbal responses were analyzed, and the number of
missing responses for each subject was counted. Occasions on
which subjects made a manual response to a target-bearing
item but then either failed to give a verbal response or
responded with a word other than the target were discounted:
These responses were treated as missing data. Four subjects
correctly detected less than 50% (18) of the targets and were
therefore discarded, leaving three groups: 10 subjects for each
tape. Response times (RTs) were adjusted so that they were
measured from the offset of each embedded target word.

Responses of less than 200 ms or greater than 1,800 ms were
also treated as missing data. For the RT analyses, missing data
points for each subject were replaced with the mean of that
subject’s available responses for WS items and SW items, as
appropriate, and missing data for each target were replaced
with the mean of the available data, across subjects, for that
target. The mean RTs, measured from target offset, and the
mean error rates are given in Table 1.

Both the RT and the error rate data were subjected to two
separate subanalyses, both with subjects (F;) and items (F,)
as the repeated measure. In the first analysis, which we term
the stress analysis, responses to nonword onsets (i.e., re-
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=—@— Word onset: target, e.g. sack in sacrif

= Matched nonword onset: target, e.g. sack in sackrek

== Unmatched nonword onset: target, e.g. mess in messtem

==O~= Word onset: embedding word, e.g. sacrifice in sacrif

=== Matched nonword onset: embedding word, e.g. sacrifice in sackrek

Figure 2. Mean activation levels of target words and embedding words given the strong-weak items, over
time slices, in SHORTLIST. Filled symbols show activation of targets embedded in word onsets (circles;
e.g., sack in /szkraf/, the onset of sacrifice), in nonword onsets matched to word onsets (squares; e.g., sack
in /szekrok/), and in unmatched nonword onsets (triangles; e.g., mess in /mestom/). Open symbols show
the activation of the embedding words in word onsets (circles; e.g., sacrifice in /sekraf/) and in matched
nonword onsets (squares; €.g., sacrifice in /sakrak/). The time slices are marked to indicate the alignment
of the activation functions relative to the last consonant of the target word (C). Slices before C are for each
phoneme working back through each item; slices after C contained the following phonemes in the
bisyllable and then silence markers. Note from the Appendix that the bisyllables varied in the number of
segments following the target, so the position of the offset of the bisyllable is variable. Note also that in one
item pair (/hipnat/—/hips /), the matched nonword onset diverged from the word onset before the final
phoneme. This is why the activation functions for the word onsets and matched nonword onsets begin to
diverge on the first segment after the final consonant of the target.
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sponses to /nomes/, /klaszk/, /sekrak/, and /mestom/) were
examined alone, ignoring the word-onset data, thus allowing a
test of any effects of stress pattern in the absence of any
competition effects. The comparison of matched and un-
matched nonword onsets alone also provides a check on the
reliability of any stress effects across all target words. In the
second subanalysis, the competition analysis, the unmatched

nonword onsets were ignored, and the word-onset data were
compared with the matched nonword-onset data (i.e., re-
sponses to items like /domes/, /nomes/, /sakrof/, and
/seekrak/). This analysis allowed competition effects to be
tested in a balanced design. The competition analysis also
includes a test for effects of stress pattern to assess their
interaction with effects of lexical competition.
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Table 1

Mean Response Times (RTs; in Milliseconds) and Error Rates
for Word Spotting of Targets in Weak—Strong (WS) and
Strong—Weak (SW) Strings in Word Versus Nonword Onsets
in Experiment 1

Nonword onset

Stress pattern ~ Word onset Target matched Target unmatched

WS
RT 665 558 569
Error rate (%) 44 26 24
Example /domes/ /names/ /klaszk/
SwW
RT 843 847 843
Error rate (%) 57 45 46
Example /seekraf/ /saekrok/ /mestom/
Note. Mean RTs were measured from target offset.

In the stress analysis, there was a highly significant effect of
stress pattern in the RT data, Fi(1, 27y = 11313, p < .001,
MS, = 20,978; Fy(1,34) = 51.10,p < .001, MS, = 13,184, with
responses to targets in WS items (e.g., /nomes/ and /klasaek/ )
on average nearly 300 ms faster than responses to SW items
(e.g., /seekrak/ and /mestam/). This pattern was repeated in
the errors, Fi(1, 27) = 37.17, p < .001, MS, = 0.0341; Fy(1,
34) = 17.37,p < .001, MS. = 0.0438, with the error rate on WS
items (25%) only half that on SW items (45%). There were no
reliable differences (in either RTs or errors) between matched
and unmatched nonword onsets and no interaction of this
factor with stress pattern (i.e., responses to /nomes/, matched
with /dames/, and /kloszk/, unmatched, were equivalent, as
were responses to /seekrok/ and /mestom/). This finding makes
it unlikely that any differences between the word-onset items
can be attributed to differences between the target words.

In the competition analysis, there was again a highly reliable
main effect of stress pattern. In RT, responses to WS items
(M = 611 ms; e.g., /domes/ and /names/) were about 230 ms
faster than those to SW items (M = 845 ms; e.g., /sakraf/ and
/sekrak/): Fi(1, 27) = 89.78, p < .001, MS. = 18,248; Fx(1,
34) =20.01,p < .001, MS. = 22,286. In errors, the effect (WS,
35%; SW, 51%) was only significant by subjects: Fy(1, 27) =
16.12, p < .001, MS, = 0.0483; F,(1,34) = 2.88,.1 > p > .05,
MS, = 0.1623.

Responses to targets in word onsets (M =754 ms; e.g.,
/domes/ and /sakrof/) were slower than responses to targets
in nonword onsets (M = 703 ms; e.g., /nomes/ and /saekrak/):
Fi(1,27) = 9.03,p < .01, MS. = 8,734; F(1, 34) = 8.86,p <
.01, MS, = 4,393. This competition effect was not equivalent
across stress pattern, as revealed by a significant interaction,
with a large effect for WS items and no effect for SW items:
Fi(1,27) = 1842, p < .001, MS. = 4,925; Fy(1, 34) = 25.48,
p < .001, MS, = 4,393. A different pattern was found in the
error analyses. There were more errors to targets in word
onsets (50%) than to targets in nonword onsets (35%), F1(1,
27) = 23.99, p < .001, MS. = 0.0281; F(1, 34) = 13.05,p <
005, MS. = 0.0310, but, in contrast to the RT data, this
word-nonword effect did not interact with the stress pattern
effect (F; and F, ns).

Thus, according to the error data, subjects found it more
difficult to spot targets in SW items than in WS items, and they

found it more difficult to spot targets in items that were word
onsets than in items that were not word onsets. The same
patterns were found in the RT data (WS faster than SW and
nonword onsets faster than word onsets), but these two effects
interacted. This interaction was examined by performing ¢
tests. Subjects were slower to detect targets in the second
syllables of WS items that were word onsets (mess in /domes/)
than in WS items that were not word onsets (mess in /nomes/):
by subjects, #;(29) = 5.20,p < .001; by items, 1,(17) = 4.84,p <
.001. There was no significant effect for the SW items, by either
subjects or items. The difference in target detection time
between WS and SW word onset items (/domes/ and /sakraf/)
was significant both by subjects, #(29) = 6.45,p < .001, and by
items, t,(34) = 2.29, p < .05. The stress effect was also found
within the matched nonword onsets. Targets were detected
more rapidly in WS items than in SW items: by subjects,
1(29) = 10.38,p < .001; by items, £,(34) = 5.59,p < .001.

Most of these effects were replicated in RT analyses measur-
ing from target onsets. These analyses do not control for word
length, however. Separate analyses of variance (ANOVAs) of
target and item lengths revealed that there were systematic
length differences in the materials. In a comparison of target
lengths in word onsets and matched nonword onsets, there was
a significant stress pattern effect, F(1, 34) = 115.76, p < .001,
MS, = 6,483. Target words in WS items were, on average, 440
ms long; they were 236 ms long, on average, in SW items.
There were no differences between word onsets and nonword
onsets, and there was no significant interaction. The same
pattern was found in a comparison of lengths of the complete
items. On average, WS items were longer (566 ms) than SW
items (529 ms), F(1, 34) = 16.87, p < .001, MS, = 8,294. The
large length differences acted to decrease the size of (but not
remove) the RT effects when measuring from target onset.

A correlational analysis was also performed, testing for
effects of word frequency. The frequencies of embedded and
of embedding words for each item were separately correlated
against both mean RT and mean error rate. The frequency of
occurrence of the target (embedded) words did not predict RT
or error performance in any condition. Nor did frequency of
embedding words correlate with either RT or errors on the
word-onset items.!

The results support the following description. It is more
difficult to spot target words in SW strings than in WS strings.

1 Frequency effects have been measured in the word-spotting task
(Freedman, 1992). Detection was faster and more accurate for higher
frequency targets (> 130 counts per million) than for lower frequency
targets (<13 counts per million). However, there were no reliable
differences comparing high-frequency targets with those of a medium
range (30-97 counts per million). The frequency-word-spotting la-
tency function thus appears to be nonlinear. Fourteen of the 36 target
words in the current experiments were in the low-frequency (=13
counts per million) range, so frequency effects ought to have been
detected. In fact, in Experiment 1, the mean RT for the low-frequency
words was 727 ms and that for the other words (> 13 counts per
million) was 703 ms. However, a one-way ANOVA with unequal n
indicated that this difference was not reliable, F(1,34) < 1, MS, =
9,404. The very large effects of competition and stress pattern, and the
fact that we did not manipulate word frequency explicitly, may have
prevented us from detecting a reliable frequency effect.
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It is also more difficult to spot target words in strings that are
themselves word onsets than in strings that cannot be contin-
ued to form words. The stress effect was reliable by both speed
and accuracy measures for both word and nonword onsets. The
word-onset effect appeared in both speed and error rates for
WS items, but only in errors for SW items.

The stress effect was predicted by the Metrical Segmentation
Strategy. Responses are faster and more accurate to targets in
WS items because lexical access should be initiated at the
second strong syllable, segmenting the item at the appropriate
location. Responses are slower and less accurate in SW items
because there is no segmentation at the second weak syllable.

The reliable difference in word-spotting responses between
targets in word onsets and targets in nonword onsets was
predicted by SHORTLIST, consistent with the hypothesis that
multiple word candidates are considered for any stretch of
speech input. It is harder to detect mess in /domes/ than in
/names/ because in the former case, the word domestic is being
entertained as a hypothesis. The interference between mess
and domestic (or between sack and sacrifice) is evidence not
only that multiple words have been activated but that they are
actively competing. SHORTLIST aiso predicted that the
competition effect would be larger in WS than in SW items, as
found. This is because, in WS items, the embedding words are
exerting maximal inhibition at the offset of the target words,
whereas in SW items, the embedding words do not have their
largest effect until later, so competition effects are slower to
emerge (cf. Figures 1 and 2).

Experiment 2

The results of Experiment 1 suggest that activation and
competition, as instantiated in the SHORTLIST model, and
sensitivity to prosodic structure, as captured by the Metrical
Segmentation Strategy, are all components of spoken word
recognition. However, there is a potential problem with the
methodology of Experiment 1. Responses to WS items were
reliably faster and more accurate than responses to SW items.
Perhaps these differences can be attributed to an attentional
strategy. Listeners were required to detect target words that
could appear at either the beginnings (as in SW items) or the
ends (as in WS items) of the stimuli. It is possible that subjects
preferred to attend to item ends, yielding faster and more
accurate performance on the WS items.

In Experiment 2, therefore, target location was blocked.
Listeners were asked to listen only for words either at the
beginnings of the items or at the ends of the items. If the stress
pattern effect in Experiment 1 was due to an item end
preference, then forcing subjects to attend to one target
location should remove the WS-SW difference. This manipula-
tion also allowed us to address another issue. Are the competi-
tion effects mandatory? If listeners can attend to one target
location, they may be able to ignore the other information in
each item. If the first syllables of /domes/ and /names/ are not
processed, or are only processed very shallowly, domestic may
not be activated in the former case, and no competition effect
will emerge. On the other hand, hearing /domes/ may activate
domestic in spite of any attentional focus. Competition effects
with blocked target location would thus indicate that activation

and competition are mandatory features of spoken word
recognition.

Method

Subjects. Sixty-three student volunteers, mainly from Clare Col-
lege, Cambridge, United Kingdom, were paid for participating. There
were 42 men and 21 women, aged between 18 and 35 years.

Materials and procedure. The three experimental tapes from Experi-
ment 1 were used. The only change in procedure was a change in the
instructions. Thirty-three of the subjects were told to monitor for
words in initial position and to ignore words in final position; 30
subjects received the opposite instructions; they were instructed to
monitor for words in final position and ignore those in initial position.
These instructions meant that only half of the original target-bearing
items now contained words to be detected, reducing the proportion of
targets from 0.5 to 0.25.

Results and Discussion

As before, verbal responses were analyzed and missing
responses were tallied. Failures to give a verbal response and
occasions in which a word other than the target was produced
were again discounted and treated as missing data. Three
subjects who monitored for words in initial position detected
50% (9) or less of the targets. They were excluded from the
analysis, leaving three groups of 10 subjects who heard each
tape in this condition. All subjects who monitored for item-
final words detected more than 50% of the targets. There were
three groups of 10 subjects on each tape with these instruc-
tions.

It is worth noting that subjects were able to follow the
instructions. Those subjects who were asked to detect words in
initial position never produced a false alarm in which they
detected a word in final position. In word-final detection, there
were five false alarms (out of a possible 540) in which subjects
responded with a word beginning at the initial position.
However, these responses were all based on both syllables of
the input string; they were not detections of targets in the first
syllable alone: One response was verbose given the string
/vabps/, and the other four responses were clip given the string
/kalip/. Clearly, subjects were able to attend to the appropri-
ate target location and ignore the words embedded in the
other location.

RTs were again adjusted so as to measure from target offset.
Responses of less than 200 ms or greater than 1,800 ms were
also treated as missing data. The mean RTs, measured from
target offset, and the mean error rates are given in Table 2.

Several ANOVAs were again performed. As in the first
experiment, the data were split into two subanalyses, one set
focusing on the nonword-onset data alone (stress analysis) and
the other set testing for competition and stress effects in a
balanced design comparing the word-onset and matched
nonword-onset data (competition analysis).

In the stress analysis, as in Experiment 1, there was a highly
reliable stress effect. Responses to targets in WS items (e.g.,
/names/ and /klosak/) were faster and more accurate than
responses to targets in SWitems (e.g., /sakrsk/ and /mestom/):
for RT, Fy(1, 54y = 85.31, p < .001, MS. = 26,902, and F(1,
34) = 107.68, p < .001, MS, = 7,942; for errors, Fi(1,54) =
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Table 2

Mean Response Times (RTs; in Milliseconds) and Error Rates
for Word Spotting of Targets in Weak—Strong (WS) and
Strong-Weak (SW) Strings in Word Versus Nonword

Onsets in Experiment 2

Nonword onset

Stress pattern  Word onset Target matched Target unmatched
WS

RT 595 470 492

Errorrate (%) 24 21 21

Example /dames/ /names/ /klos®k/
SwW

RT 772 759 756

Error rate (%) 39 37 27

Example /sekraf/ /sekrak/ /mestam/

Note. Mean RTs were measured from target offset.

8.00, p < .01, MS. = 0.0440, and Fy(1, 34) = 5.64, p < .05,
MS. = 0.0375. There was no significant difference in RT
between the two types of nonword onset (/names/ vs. /klosek/
and /sakrok/ vs. /mestaom/; Fy and F, < 1). This effect did not
interact with the stress effect. In errors, there were no reliable
differences between the two types of nonword onset, although
in the subject analysis the effect approached significance: Fi(1,
54) =3.39,.1 <p < .05,MS. = 0.0197; F, < 1, MS. = 0.0617.
This effect appeared to interact with the stress effect, but this
was again marginally reliable by subjects only: F;(1, 54) = 3.39,
1> p > .05 MS,. = 0.0197; Fy(1, 34) = 1.07,p > .1, MS, =
0.0375. There was clearly no effect in the WS items (0% differ-
ence, on average). The mean difference of 10% in the SW
items (responses to /sekrak/ less accurate than responses to
/mestom/) was examined with ¢ tests; it was marginally sig-
nificant by subjects only: £,(29) = 1.83,.1 > p > .05; 5,(17) =
1.00,p > 0.1.

Next, the competition analysis was performed. Again, there
was a reliable stress pattern effect in RT, Fy(1, 54) = 54.22,
p < .001, MS, = 30,048, and F,(1, 34) = 18.24, p < .001,
MS. = 32,087, and in errors, Fi(1, 54) = 12.03,p < .005,MS. =
0.0582, and F,(1, 34) = 4.13, p < .05, MS. = 0.1016. Subjects
were faster and more accurate at word spotting in WS items
(e.g., /domes/ and /nomes/) than in SW items (e.g., /sakrof/
and /szkrak/). There were no other significant effects in the
error analyses (no differences between word onsets and
nonword onsets and no interaction of stress pattern with
word-nonword onset; all Fs < 1). However, speed of response
to targets in word onsets was slower (M = 684 ms) than to
targets in items that could not be continued to form longer
words (M = 615 ms): Fy(1,54) = 17.70,p < .001, MS. = 8,125;
Fy(1, 34) = 10.09, p < .005, MS. = 8,777. This effect was not
equivalent across stress pattern: Fy(1, 54) = 11.59, p < .005,
MS. = 8,125; Fx(1, 34) = 9.34, p < .005, MS,. = 8,777. In the
WS items, responses to targets in word onsets, like mess in
/domes/, were reliably slower than responses to targets in
nonword onsets (mess in /names/): by subjects, #;(29) = 5.05,
p < .001; by items, £,(17) = 5.56, p < .001. For the SW items,
however, the difference in speed of detecting, for example,
sack in /saekrof/ and /szekrak/, was not significant.

Correlational analyses were also performed. As in Experi-
ment 1, neither speed nor accuracy measures correlated either
with the frequency of occurrence of the target words or with

the frequency of occurrence of the embedding (word-onset)
words.

An explicit comparison of the results of Experiments 1 and 2
was undertaken (treating the WS-SW comparison in Experi-
ment 1 as between subjects). In the stress analysis, there was a
main effect of experiment both in RT, F(1, 108) = 13.71,p <
.001, MS. = 31,536, and F(1, 34) = 33.58, p < .001, MS, =
6,985, and in errors, Fi(1, 108) = 9.82, p < .005, MS. = 0.0438;
Fy(1, 34) = 1324, p < .001, MS. = 0.0195. In RT, the
experiment variable did not interact with the stress-pattern
variable, suggesting that although subjects were faster with
blocked target position, the size of the WS advantage was
unaffected by this increase in speed. However, in the error
data, the experiment variable did interact with the stress
variable, although this was only significant by items: F(1,
108) = 3.23,.1 > p > .05, MS, = 0.0438; F,(1, 34) = 6.86,p <
.05, MS. = 0.0124. The difference in error rate between WS
and SW items was somewhat larger in Experiment 1.

In the competition analysis, there was again a main effect of
experiment, with responses faster and more accurate in Experi-
ment 2 than in Experiment 1: for RT, F;(1, 108) = 11.60, p <
001, MS, = 32,175, and Fy(1, 34) = 24.76, p < .001, MS, =
9,041; for errors, Fi(1, 108) = 18.18, p < .001, MS, = 0.0527,
and Fy(1, 34) = 24.39, p < .001, MS, = 0.0236. In the RT
analyses, the experiment variable did not interact with any
other variable. In the error analyses, however, experiment
interacted with the competition effect: F;(1, 108) = 10.27,p <
005, MS, = 0.0228; Fx(1, 34) = 10.21,p <.005, MS,. = 0.0138.
The differences in accuracy of word spotting between targets in
word onsets and in nonword onsets were present only in
Experiment 1.

In this experiment, we have replicated the stress-pattern
effect found in Experiment 1. Subjects were faster and more
accurate spotting words in WS strings than in SW strings, even
when they could attend to a prespecified target location. This
result shows that the stress effect found in Experiment 1
cannot be attributed to a strategy of attending to the ends of
items. Instead, the stress effects found in both experiments
support the prediction of the Metrical Segmentation Strategy.
Targets are detected more readily in WS strings because these
strings are segmented at the onset of the target word (i.e., at
the onset of the strong syllable). Targets are detected with
greater difficulty in SW strings because these strings are not
segmented at the offset of the target word (i.e., at the onset of
the weak syllable).

The competition results of Experiment 2, however, differ in
interesting and informative ways from those of Experiment 1.
For WS strings, there were competition effects in both experi-
ments. In Experiment 1, there were competition effects in
speed and accuracy; in Experiment 2, there was only an RT
effect. In contrast, for SW strings, there was evidence of
competition only in Experiment 1, and then only in error rates.
In Experiment 2, in which subjects could attend specifically to
item onsets, no differences emerged between items like
/sxkrof/ and /sakrak/. Although these results appear to be
problematic for competition models, they are in fact predicted
by SHORTLIST.

There are two findings in the competition results that need
to be explained. The first is that the competition effects are
larger in WS than in SW strings; the second is that they were
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absent for SW strings in Experiment 2. As discussed in
Experiment 1, SHORTLIST predicts the first finding because
the inhibitory effect of the embedding words comes into play
earlier, relative to target offset, in WS strings than in SW
strings. The fact that the competition effect emerges slowly in
SW strings provides an account of the second finding. The
explanation of both rests on determining which part of the
activation function should be used to predict performance in
the word-spotting task. For WS strings, SHORTLIST only
predicts a competition effect (e.g., greater activation for mess
in /names/ than /domes/) in a relatively narrow time window,
centered around the final consonant of the target (C in Figure
1). At this point, activation of the embedding word (e.g.,
domestic given /doames/) is already high, inhibiting the activa-
tion of the target word (e.g., mess) and producing a large
competition effect.

Near the final consonants of targets in SW strings (C in
Figure 2), SHORTLIST predicts no difference in detection of
targets in word onsets and matched nonword onsets (e.g., sack
in /saekrof/ and /saekrok/). Activation of sacrifice is equivalent
in these two cases at this point. Differential activation of
sacrifice, and the consequent changes in the activation level of
sack, do not appear until later. If we note that subjects were
faster and more accurate in Experiment 2, a simple explana-
tion of the data pattern emerges. When subjects could attend
to targets located in the first syllable, and respond rapidly,
competition effects between the word-onset and matched
nonword-onset strings were not found. In Experiment 1, in
which targets could appear in either location, subjects re-
sponded more slowly: late enough for small differential compe-
tition effects to have emerged. Note that it is only much later
(at C+ 2 and C + 3) that SHORTLIST predicts that the
competition effect (the difference in target activation between
word onsets and matched nonword onsets) should be larger in
SW than in WS strings.

In Experiment 1, performance on the matched SW nonword
onsets (/sakrok/) was equivalent to that on unmatched SW
nonword onsets (/mestam/), whereas in Experiment 2 there
was a tendency for performance on the unmatched items to be
more accurate (by 10%, on average). The unmatched items
tended to become nonwords earlier than the final phoneme,
whereas the matched items had nonword points on their final
segments. As Figure 2 shows, in SHORTLIST, late in time, the
activation of targets in matched and unmatched items is
equivalent (after the final /k/ of /sakrak/, e.g., has lowered
the activation of sacrifice). Earlier, however, there is an
advantage for targets in unmatched items. As predicted, when
differences in target detection between SW word and matched
nonword onsets were larger, those differences between matched
and unmatched nonword onsets are smaller, and vice versa.
The differences between SW nonword items across experi-
ments is thus also consistent with SHORTLIST.

In summary then, SHORTLIST predicts the pattern of
competition effects found over Experiments 1 and 2. In WS
strings, the longer, embedding word (e.g., domestic) begins
earlier in time than the embedded word (mess). The longer
word will have established a degree of activation before there
is any evidence for the target word. Near the final phoneme,
target activation is strongly suppressed by the high activation
of the longer word, producing a large competition effect. The

model thus predicts a large competition effect for targets in
WS strings. Specification of item-final target location was not
sufficient to remove this effect. In contrast, the activation of a
target word in an SW string (e.g., sack) is not suppressed by
that of the longer, embedding word (sacrifice) until after the
final phoneme of the target, producing a small competition
effect. SHORTLIST thus predicts smaller competition effects
for targets in SW than in WS strings. With specification of
item-initial target location, word spotting was fast enough for
this competition effect to go undetected (Experiment 2). In the
absence of a location cue, a small competition effect was found
(Experiment 1).

Experiment 3

The results of Experiment 2 indicate that the main effect of
stress pattern is resistant to attentional biases. Hence, the
stress effect in Experiment 1 was not due to a strategy of
attending preferentially to item-final targets. The advantage in
both speed and accuracy of responses to targets in WS strings
over responses to targets in SW strings, as predicted by the
Metrical Segmentation Strategy, appears to be robust.

There is, however, another potential problem with the
stress-pattern effect. As noted earlier, the targets in the WS
strings were considerably longer than those in the SW strings.
The differences in performance on these two types of string
may therefore be due to this length confound. The targets in
WS strings could have been detected more rapidly and more
accurately because they were longer than those in SW strings.

Experiment 3 was designed to address this issue. We again
used the word-spotting task, and in fact used exactly the same
materials as those used in Experiments 1 and 2. We attempted
to equate the target words for length with a speech compres-
sion algorithm. We compressed the WS strings and expanded
the SW strings. If the differences we have reported are due to
the length confound, there should be no differences in the
speed or accuracy of detection of words of the same length in
WS and SW strings. If, however, the differences are due to the
Metrical Segmentation Strategy, they should emerge in spite of
the length control.

Method

Subjects.  Thirty-two student volunteers, mainly from St. Catharine’s
College, Cambridge, United Kingdom, were paid for participating.
There were 22 men and 10 women, aged between 18 and 24 years. Two
subjects had to be excluded as a result of experimenter error, leaving
10 subjects in each group.

Materials and construction. The materials from Experiments 1 and
2 were used. Each bisyllabic item was digitized, sampling at 22.05 kHz
with 16-bit resolution. Items were then compressed or expanded with a
compression algorithm (Charpentier, 1988).

This algorithm uses pitch-period extraction and averaging. It pro-
duces a much higher quality of speech than earlier techniques using
deletion or addition of speech samples. For voiced portions of speech,
individual pitch periods are averaged together. For unvoiced portions,
individual digital sample points are averaged. Compression occurs
when averaged pitch periods (or sample points) replace original
periods (samples) and expansion occurs when the averages are added
between the originals. Compression or expansion rate is determined by
the frequency of averaging. The output is speech that is significantly
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shorter or longer than the original but that still retains the major
features of the uncompressed version, such as speaker identity and
pitch. The signals sound as if they have been spoken either rather
quickly or rather slowly, but there is little loss in quality or intelligibility
(except at very high rates of compression; Altmann and Young, 1993).

WS strings were compressed and SW strings were expanded. The
measured lengths of each target word were used to compute the
compression and expansion rates for that word. Recall that each word
appeared in three contexts, two with one stress pattern and one with
the opposite stress pattern. For those targets that appeared twice in
WS strings, an average target length halfway between the mean of the
two WS measurements and the one SW measurement was calculated
for each target. For those that appeared twice in SW strings, an
average of the mean of the two SW measurements and the one WS
measurement was calculated for each target. These mean lengths
could then be used to compute compression or expansion ratios that
would make each occurrence of a target the same mean length if the
algorithm operated on absolute duration. However, because the
algorithm uses pitch periods, the length resulting from a given
compression depends on both the compression ratio and the pitch of
the input speech. To guarantee that the lengths of the targets were at
least equated, or, if anything, that the lengths of the targets in the SW
strings were greater than those in the WS strings, we therefore
compressed or expanded at seven-sixths the rate calculated on the
basis of mean length.

Each complete item, not just each target word, was compressed or
expanded. In 12 of the 54 SW items this resulted in an unnaturally
long, weak second syllable. Because duration is a strong correlate of
stress, these sounded more like strong-strong (SS) than SW items. For
these items, we spliced the original weak second syllable (schwa plus
final consonant) onto the expanded target word. Splices were made at
the zero-crossing at the onset of the first pitch period of the schwa.
Because the algorithm operates at the level of pitch periods, preserv-
ing transitional information, the splices were undetectable.

The mean rate of compression, for the targets in WS strings, was
73%, resulting in a mean target length of 294 ms (note that it was 440
ms in the original, uncompressed materials). For targets in SW strings,
the mean expansion rate was correspondingly 127%, resulting in a
mean length of 333 ms (compared with 236 ms in the originals). The
length difference in the new materials was therefore reversed, with
targets in the new SW strings 39 ms longer, on average, than those in
the new WS strings, compared with a difference of 204 ms in the oppo-
site direction in the original materials. Two ANOVAs tested these
length differences. The first ANOVA compared the lengths of the
targets in nonword onsets. There was a significant difference between
targets in WS strings (290 ms, on average) and targets in SW strings
(334 ms, on average), F(1, 34) = 50.04, p < .001, MS. = 711. The
compression and expansion, for these items, had therefore reversed
the length difference. The second ANOVA compared target lengths in
word onsets and matched nonword onsets. Here the difference was
again reversed (targets in SW items longer than those in WS items),
but was slightly smaller (WS, 301 ms; SW, 327 ms). The difference was
not quite significant, F(1,34) = 2.95, .05 < p < .1, MS. = 4,374.

All of the fillers from the earlier experiments (including the practice
items) were also compressed or expanded. All WS fillers were
compressed at the average rate (73%) and all SW fillers were
expanded at the average rate (127%).

After compression or expansion of each target-bearing item, timing
pulses were aligned with the onset of each target word with a speech
editor. At output, the items were upsampled from 22.05 kHz to 44.1
kHz and then recorded onto the left channel of a digital audiotape at a
rate of one item every 3 s. The timing pulses were recorded onto the
right channel.

As in Experiments 1 and 2, three experimental tapes were con-
structed. These tapes had exactly the same running order of items as

before. The experiment was therefore an exact analogue of Experi-
ment 1, but for the length changes in the items.

Procedure. The procedure was identical to that in Experiment 1,
except for a small change in the instructions given to subjects. They
were warned that the items would appear to be said either rather
quickly or rather slowly, and they were told to try to ignore these
changes in speed.

Results and Discussion

Verbal responses were again analyzed and missing re-
sponses were counted. When a subject failed to give the target
word as a verbal response but pressed the button, that manual
response was discounted and treated as missing data. As
shown in Table 3, subjects found this experiment much more
difficult than the earlier two. Only 12 subjects managed to
detect more than 50% (18) of the targets. It therefore seemed
inappropriate to use the previous rejection criterion, which
required subjects to detect more than half of the targets. RTs
were adjusted for measurement from target offset, with those
falling outside a window of 200-1,800 ms treated as missing
data. The mean RTs, measured from target offsct and the
mean error rates are given in Table 3.

As in Experiments 1 and 2, stress and competition analyses
were carried out separately. In the stress analysis, there was a
main effect of stress pattern: for RT by subjects, Fy(1, 27) =
14.97, p < .001, MS. = 5,278; for RT by items, Fy(1, 34) =
11.05, p < .005, MS. = 2,743; and for errors, Fi(1, 27) =
122.43, p < .001, MS, = 0.0360, and Fx(1, 34) = 46.96, p <
.001, MS, = 0.0563. Word spotting in WS items (e.g., /names/
and /kloszk/) was, on average, 51 ms faster and 39% more
accurate than in SW items (e.g., /sekrok/ and /mestom/).
There were no other significant effects in these analyses.

In the competiton analysis, there was no stress effect in the
RT data (F; and F, < 1), but a highly significant effect in the
errors. Target detection was an average of 33% more accurate
in WS items (e.g., /domes/ and /nomes/) than in SW items
(e.g., /seekraf/ and /saekrak/): by subjects, Fi(1, 27) = 77.43,
p < .001, MS, = 0.0445; by items, F,(1, 34) = 19.36,p < .001,
MS. = 0.1068. On the other hand, there was no competiton
effect in the errors (F; and F, < 1), but there was one,
significant by subjects only, in the RTs: F;(1,27) = 8.13,p <
.iOl,MSe = 4,934; F(1, 34) = 2.36,p > .1, MS. = 6,332.

Table 3

Mean Response Times (RTS; in Milliseconds) and Error Rates
for Word Spotting of Targets in Weak—Strong (WS) and
Strong-Weak (SW) Strings in Word Versus Nonword Onsets
in Experiment 3

Nonword onset

Stress pattern ~ Word onset Target matched Target unmatched

wS
RT 759 685 672
Error rate (%) 46 39 38
Example /domes/ /names/ /Kklaszek/
SwW
RT 727 728 733
Errorrate (%) 73 79 74
Example /sekraf/ /s&ekrak/ /mestom/
Note. Mean RTs were measured from target offset.
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There was a significant interaction of the stress and competi-
tion effects for RT by subjects, Fi(1,27) = 7.34, p < .05,
MS,. = 5,538; for RT by items, F,(1, 34) = 5.88,p < .05, MS. =
6332; and for errors, Fi(1, 27) = 6.99,p < .05, MS, = 0.0191,
and Fy(1, 34) = 2.84,p = .10, MS, = 0.0282. These interactions
were examined with 7 tests.

In RT, the competiton effect was due entirely to the WS
items (74 ms difference, on average): by subjects, #,(29) = 2.96,
p < .01; by items, £;(17) = 2.21, p < .05. Responses to targets
in WS word onsets (/domes/) were reliably slower than those
to the same targets in WS nonword onsets (/nomes/). The
average difference of 1 ms between responses to targets in SW
items that were or were not word onsets (/szkrof/ and
/szkrok/) was not significant. Responses to targets in WS
nonword onsets (/names/) were reliably faster than those to
targets in SW nonword onsets (/sxkrok/) only in the subject
analysis (mean difference of 43 ms): By subjects, #;(29) = 2.43,
p < .05; by items, £,(34) = 1.36, p > .1. The inverse effect
(responses to targets in WS word onsets such as /dames/ were
32 ms slower, on average, than those to targets in SW word
onsets such as /sxkrof/) was not significant by subjects or
items.

In errors, ¢ tests showed that word spotting was reliably more
accurate (27%, on average) in WS word onsets (/domes/) than
in SW word onsets (/sakraf/): by subjects, £,(29) = 4.80,p <
.001; by items, £;(34) = 3.11, p < .005. Similarly, targets in WS
nonword onsets (/names/) were detected more accurately
(40%, on average) than those in SW nonword onsets
(/szekrak/); by subjects, 1(29) = 9.02,p < .001; by items, £(34) =
4.73, p < .001. There were no significant differences in error
rates in the pairwise comparisons of word and nonword onsets
with the same stress patterns.

Finally, the stress effects in Experiments 1 and 3 were
compared. In the stress analysis, there was a highly significant
stress effect in both RT and errors: for RT, Fi(1, 54) = 117.71,
p < .001, MS, = 6,847, and F,(1, 34) = 47.71,p < .001, MS, =
11,224, for errors, Fi(1, 54) = 148.38, p < .001, MS, = 0.0351,
and F,(1,34) = 4947, p < .001, MS. = 0.0631. There were
also interactions of this effect with the experiment variable in
both RT and errors. In RT, this interaction indicated that the
stress effect was smaller in Experiment 3 than in Experiment 1;
Fi(1,54) = 36.54, p < .001, MS, = 6,847; F5(1, 34) = 48.03,
p < .001, MS, = 4,669. In errors, the interaction indicated that
the stress effect was larger in Experiment 3 than in Experiment
1: F1(1, 54) = 13.52,p < .001, MS, = 0.0351; F,(1, 34) = 7.68,
p < .005, MS, = 0.0370.

A very similar pattern was obtained in the competition
analysis. There was again a significant stress effect in both RT
and errors: for RT, Fi(1, 54) = 43.74,p < .001, MS. = 4,979,
and F,(1,34) = 7.26, p < .05, MS. = 44,475; for errors,
Fy(1,54) = 80.82, p < .001, MS, = 0.0464, and F,(1,34) =
11.55,p < .005, MS. =0.1948. The interactions again indicated
that the RT stress effect was smaller in Experiment 3 than in
Experiment 1—F;(1, 54) = 36.26, p < .001, MS. = 4,979;
F5(1,34) = 30.24, p < .001, MS, = 5,189—and that the error
stress effect was larger in Experiment 3 than in Experiment 1,
although this was not quite significant by items, F;(1, 54) =
10.22,p < .005, MS. = 0.0464; F,(1,34) = 3.83,.1 > p > .05,
MS. = 0.0743.

The results of Experiment 3 can now be summarized. As in
Experiments 1 and 2, there was a significant competition effect
in the RTs to spot words in WS strings. Subjects were slower to
detect targets in word onsets (e.g., mess in /domes/) than in
nonword onsets (€.g., mess in /names/ and sack in /klasak/).
Subjects were also less accurate in word onsets than in
nonword onsets, but this small effect was not significant. Thus,
for WS strings, the data replicate those of Experiment 2. The
same is true for the SW strings: There were no competition
effects in speed or accuracy, just as in Experiment 2. The
absence of any competition effects in SW items in that
experiment appeared to be due to the increased speed relative
to Experiment 1 (it was only when subjects were going slowly
that the differential effect of the final phonemes [e.g., of
/sekraf/ and /sakrok/] could be detected). Responses to the
SW items are about 30 ms faster here than in Experiment 2. It
thus appears that on the relatively few occasions that subjects
were able to detect targets in SW strings, they were able to spot
them before the following context (continuing or not continu-
ing as a possible word) could act to produce a differential
competition effect. On the other hand, the competition effect
in WS strings is very robust, resisting attentional focus on
target location (Experiment 2) and a 73% compression rate
(Experiment 3).

Most important, the stress effect survived the compression—
expansion manipulation. It was highly reliable in the error data
for both word onsets and nonword onsets and reliable in the
RT data for nonword onsets. Spotting words in SW strings was
more difficult than spotting words in WS strings even when the
targets in the SW items were longer than those in the WS
items. The results of Experiments 1 and 2 cannot therefore be
attributed solely to a length confound. Only the added size of
the stress effect in Experiment 1 as compared with Experiment
3 can be the result of length differences.

The stress-pattern differences found in all three experi-
ments thus appear to be due, primarily, to the operation of the
Metrical Segmentation Strategy. A WS bisyllable is segmented
by the Metrical Segmentation Strategy at the onset of the
strong syllable, hence at the onset of the target word, making it
easier to detect the target. An SW bisyllable is not segmented
by the Metrical Segmentation Strategy. It is harder to detect a
target in an SW string because no segmentation position is
postulated in such strings.

In summary, the results of Experiment 3 indicate that the
stress-pattern effects found in Experiments 1 and 2 are not due
entirely to effects of target length. Even when targets in SW
strings are somewhat longer than those in WS strings, word
spotting is slower and less accurate for the SW strings. This is
as predicted by the Metrical Segmentation Strategy.

General Discussion

The three experiments have separately tested the effects in
spoken word recognition of lexical competition (as instantiated
in SHORTLIST) and prosodically guided explicit segmenta-
tion (as instantiated in the Metrical Segmentation Strategy).
Clear support is provided for both.

The results of all the experiments strongly support the
competition predictions of SHORTLIST. Multiple lexical
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candidates appear to be considered as hypotheses for what
words a piece of speech contains. Target words embedded in
bisyllabic strings are more difficult to spot when the strings are
themselves the beginning of longer words. In WS strings, this
effect emerged even when listeners knew the location of the
target word (Experiment 2), and after compression (Experi-

_ment 3). In SW strings, however, the effect was only present in
Experiment 1. When subjects responded more rapidly to SW
strings (Experiments 2 and 3), a competition effect was not
detected. This pattern of results is in line with the predictions
of the SHORTLIST model: Competition effects are larger for
WS than SW strings at the offset of the target word (see
Figures 1 and 2) because the longer, embedding word has the
advantage of starting earlier than the shorter target word in
the WS case. In the SW case, the two words begin at the same
time. Earlier activation produces more inhibition sooner and
hence larger competition effects at the offsets of target words
in WS strings.

The results of all the experiments are also exactly as
predicted by the Metrical Segmentation Strategy. Word detec-
tion responses are both faster and more accurate in WS than in
SW strings. This is true even when subjects can focus on target
location (Experiment 2) and when the length of the target
words has been controlled (Experiment 3). As predicted by the
Metrical Segmentation Strategy, WS items are at an advantage
because they are segmented at the onset of their second
(strong) syllables, unlike SW items, which are not segmented
at the onset of their second (weak) syllables. Previous evidence
in favor of prosodically based segmentation has been explained
in terms of the efficiency of this strategy: The distribution of
words in English speech is such that assuming strong syllables
to be word initial will be a very good bet. The present new
variant of the word-spotting task thus bolsters the previous
evidence from initial word-spotting and juncture mispercep-
tions.

The evidence for lexical competition provided by the word-
spotting task, in turn, joins that which is obtained from other
tasks, such as cross-modal priming and perceptual identifica-
tion. Using cross-modal semantic priming, Zwitserlood (1989)
has shown that words that begin in the same way are activated
when the input is consistent with those candidates, but that
there is rapid selection of the appropriate candidate when the
input becomes consistent with only that word. For example,
with the pair kapitein and kapitaal, lexical decision was speeded
on semantic relatives of both words for visual probes presented
up to the /t/ of either word. Priming was obtained only for
relatives of the appropriate word for probes aligned with the
following vowel. Similar evidence for the activation of multiple
entries that begin in the same way, followed by rapid selection
of the appropriate candidate, was reported by Marslen-Wilson
(1987, 1990).

These results are all for words that begin in the same way,
sharing the same initial phonemes. The previously existing
evidence was weaker for activation of words that begin at
different points in time. Swinney (1981) reported that when
subjects heard boycott, they were facilitated on a semantic
relative of boy (presented halfway through boycott) but not on a
relative of cot (presented at the offset of boycott). Shillcock
{1990), however, has demonstrated a priming effect of embed-

ded words, such as bone in trombone: Lexical decisions to
probes like rib, presented at the offset of trombone, were
speeded relative to those to unrelated control probes.

Other evidence for activation and competition has appeared
in a number of other tasks, including perceptual identification,
auditory repetition (naming), and lexical decision (Cluff &
Luce, 1990; Goldinger, Luce, & Pisoni, 1989; Goldinger, Luce,
Pisoni, & Marcario, 1992; Luce, 1986b; Luce et al., 1990; Taft,
1986). The effects of frequency and of similarity neighbor-
hoods, for instance, are interdependent. High-frequency words
in sparse neighborhoods of low-frequency words are recog-
nized rapidly and accurately, whereas low-frequency words
with many high-frequency neighbors are recognized with
difficulty. Luce et al. (1990) have captured these results in a
model of spoken word recognition (the Neighborhood Activa-
tion Model, or NAM), which assumes that multiple candidate
words are activated on the basis of the sensory input. Word
recognition is based on frequency-weighted neighborhood
probability values computed for each activated word. Recogni-
tion occurs when a word decision unit reaches a criterion.
Thus, although the candidate words do not directly compete
through inhibition, as in SHORTLIST, selection is neverthe-
less based on competition because it takes into account the
evidence supporting each candidate.

The research that has supported the NAM is therefore also
consistent with competition models such as SHORTLIST.
Most of this work, however, like that using the cross-modal
priming task, has focused on monosyllabic words, and thus on
predictions of activation and competition in which candidates
share initial portions. One exception is a perceptual identifica-
tion study reported in Cluff and Luce (1990). Here, listeners
were asked to identify spondees (bisyllables with two strong
syllables), such as bucksaw, which were presented in white
noise. Some syllables were designated as easy (high-frequency
words with sparse, low-frequency neighborhoods) and others
as hard (low-frequency words with dense, high-frequency
neighborhoods). Several neighborhood effects were detected.
For example, listeners found it easier to identify a spondee
with a hard first syllable when the second syllable was easy than
when it too was hard. The results suggest that shorter words
embedded in longer words (and the short words’ neighbors)
are all accessed during the recognition of longer words.

In summary, there now appears to be a substantial body of
evidence in favor of interword competition in spoken word
recognition. Thus, the present findings complement those in
the previous literature. However, our findings also extend the
previous evidence for competition. First, most of the previous
evidence addressed competition between words beginning in
the same way. It appears now to be strongly attested that when
the onset of a spoken word is heard, all the words that begin in
that way are treated as hypotheses by the recognition system.
The previous evidence was rather less forthcoming, however,
on the question of words embedded in other words or, more
generally, of all possible words beginning at all possible
locations in a string of speech sounds. The present findings
provide clear-cut evidence of this type of lexical competition. It
now appears certain that all words beginning at any point in an
incoming speech stream are, at least momentarily, considered
as potential candidates for word recognition.
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Second, our results indicate that word recognition entails
both activation and competition. They show not only that
multiple candidates are activated but that these candidates
then compete for recognition. Many of the previous results,
such as those from the cross-modal priming task, have indi-
cated only that multiple words are activated during recogni-
tion. The interference found here between, for example, mess
and domestic indicates that these lexical hypotheses actually
compete with each other.

Third, the present findings also extend the methodological
range of the evidence for lexical competition. There are
problems inherent in all laboratory tasks, including those that
have been used to support claims for competition. The
cross-modal priming task, for instance, rests on assumptions
about the mechanism of priming—that activation of a candi-
date word will be sufficient to induce a priming effect and that
the emergence and disappearance of priming directly reflects
the rising and falling of the activation level of the candidate
word. Neither assumption has been clearly supported by
experimental evidence. The perceptual identification task, in
turn, allows the possibility of responses based on guessing in
cases in which a degraded signal has in fact been misperceived.
Finally, the lexical-decision task may also involve postpercep-
tual decision processes, so that here too competition effects in
lexical decision could be the result of postperceptual strategies
rather than the normal mechanisms of perception.

The word-spotting task as used in the present study is not
subject to these problems. The predictions in word spotting
emerge directly from the assumptions of the models under test
and involve no assumptions about mechanisms of priming. The
competition effects found in the word-spotting task likewise
appear to be free of postperceptual influence and thus due to
mandatory perceptual processing alone; they emerge even
when subjects can attend to target locations. Furthermore,
word spotting has some ecological validity in that it requires
subjects to identify real words in unsegmented speech, just as
in normal recognition.

We conclude that activation and competition of lexical
candidates are genuine properties of the speech recognition
system. In continuous speech recognition, a parse of the
speech stream into a stream of words is achieved through a
process of competition between word candidates. We conclude
also that the recognition system is accorded added efficiency by
sensitivity to the prosodic structure of the language. The
stress-pattern effects found in the present study suggest that
the competition process operates in conjunction with an
explicit segmentation process based on prosodic structure.

There is no conflict between the predictions from the two
models we have tested. Although the Metrical Segmentation
Strategy suggests where word boundaries are likely to be, it
entails no claims about the mechanism of parsing, that is,
about ways in which lexical candidates are selected after they
have been accessed. In contrast, SHORTLIST makes no
assumptions about where word boundaries might occur, but
does specify that a parse is achieved by competition. The two
models are therefore compatible and can be jointly incorpo-
rated into a single overall model of spoken word recognition.

One way in which this could be achieved is for the Metrical
Segmentation Strategy to be incorporated in SHORTLIST as a

bias in the competition process. In this instantiation, the
Metrical Segmentation Strategy would not determine where
lexical access would occur. Instead, it would act to make words
beginning at probable onset positions (strong syllables) more
likely to be recognized. Given a strong syllable in the input,
candidate content words beginning at that syllable could
receive a higher level of activation than candidates not
beginning at that location. Success in the competition process
would thus be more likely for words beginning at strong
syllables than for words straddling these points. (Lexical
entries in the model would of course have to be more
sophisticated: They would have to include information about
syllabification and stress patterns and about grammatical
class.) A version of SHORTLIST incorporating the Metrical
Segmentation Strategy would predict the main effect of stress
pattern found in both experiments. Targets beginning at the
strong second syllable in WS strings would have their activa-
tion levels boosted, making a word boundary more plausible at
this location. In SW strings, words beginning at the second
weak syllable would not be advantaged. A juncture between a
strong syllable and a following weak syllable would therefore
be less likely than one between a weak syllable and a following
strong syllable. Aside from any competition effects, then,
target detection would be predicted to be easier in WS than
SW strings—exactly as observed.

SHORTLIST and the Metrical Segmentation Strategy to-
gether provide a powerful account of spoken word recognition,
realistically adjusted to the structure of the vocabulary and the
distributional occurrence of words in speech.
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Appendix
Experimental Materials

The completions of the word onsets, together with their word frequency, taken from Francis and Kud¢era (1982), are shown in
parentheses. The frequency counts for the target words are also shown in parentheses.

1. Target-Bearing Items

Words Embedded as Second Syllable of Weak-Strong (WS)
Word Onsets, WS Nonword Onsets, and
Strong-Weak (SW) Nonword Onsets

Words Embedded as First Syllable of SW Word Onsets,
SW Nonword Onsets, and WS Nonword Onsets

WS Sw Sw WS
WS Word Nonword  Nonword Target SW Word Nonword Nonword Target
Onset Onset Onset Word Onset Onset Onset Word
doMES (tic63/tically 1) neMESS MESStem  mess (26) SACrif (ice40) SACKrek  kleSACK  sack (11)
peRIM (eterl) seRIM RIMent rim (8) BIGam (ist0) BIGef sheBIG big (359)
caLYP (so 1) baLIP LIPnel lip (87) CELeb (rate25) CELLeg  derCELL cell (146)
coNUN (drum 0) geNUN NUNtek nun (6) none sell (129)
(108) DIGnif (y8) DIGnep  feDIG dig (33)
phiLOS (opher25/ HYPnot (isel) HIPesh geHIP hip (18)
ophize3/ophy88) meLOSS LOSSkem loss (132) COMpan (y453) COMEpeg treCOME  come (1561)
coRREC (tion7) beWRECK WRECKeb  wreck (19) HEMis (pherel5/
traDIT (ion115) keDISH D1ISHek dish (38) phericall) HEMep veHEM hem (8)
coRROB (orate5) peROB ROBeg rob (15) ARMis (ticed) ARMek fongARM  arm (278)
heRED (itary2/ity3) veRED REDIe red (180) PALpit (ate0) PALpent  vePAL pal (3)
read (83) DOCum (ent38) DOCKyeb preDOCK  dock (10)
verNAC (ular2) derKNACK KNACKseth knack (4) doc (19)
verBOS (ity0) sherBOSS  BOSSet boss (29) LIMous (ine5) LIMetch kreLIM limb (10)
seDUC (tion3/tive2) freDUCK  DUCKrel duck (21) DEDic (ate25/ation21) DEADel geDEAD dead (174)
coNNEC (tion86/tive3) geNECK NECKshef  neck (83) JUGger (naut0) JUGek meJUG jug (6)
proTAG (onist2) teTAG TAGelt tag (13) DECad (ent2/ence2) DECKep weDECK  deck (30)
reLUC (tant15/tance5/ DIPlom (at12/atic28)  DIPlen shenDIP dip (11)
tantly7) veLUCK LUCKem luck (49) RENeg (ade0) WRENenk kewWREN wren (0)
suFFIC (ient63/iencyl/ DEN:ig (rate0) DENedge beDEN den (3)
iently42) reFISH FISHep fish (63) GELat (ine0) GELeb deGEL gel (2)
rePUB (lic49) lePUB PUBetch pub (2)
parTIC (ular184/ Mean frequency: Mean fre-
uvlarityl/ularly146/ 38 (sd102) quency:
ulatel) sheTICK TICKedge tick (8) 156 (sd359)
Mean frequency: Mean fre-
52 (sd81) quency:
54 (sd63)

(Appendix continues on next page)
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2. Filler Items

Nonwords Embedded as Second Syllable of WS Word Onsets, Nonwords Embedded as First Syllable of SW Word
WS Nonword Onsets, and SW Nonword Onsets Onsets, SW Nonword Onsets, and WS Nonword Onsets
WS SW Sw WS
WS Word Nonword Nonword Embedded SW Word Nonword Nonword Embedded
Onset Onset Onset Nonword Onset Onset Onset Nonword
feLIC (ityS/itousl) keLISS LISSle liss RASpberr (y1) RAZble weRAZ raz
linGUIS (tic10/ticallyl/ GOSSam (erl) GOSSedge  heGOSS goss
ticsS) monGWISS GWISSek gwiss DROMed (ary0) DROMeb leDROM drom
maNEUV (er19/ FACul (ty78) FACKus treFACK fack
erabilityl/eringl) paNOOVE NOOVEsh noove FRIVol (ous6) FRIVek keFRIV friv
peTIT (ion27/ioner31) greTISH TISHet tish HABer (dashery2) HABev scHAB hab
moNOG (amousl/amyl) beNOG NOGleb nog FOLLic (le0) FOLLesh pleFOLL foll
caTHED (ralll) 1aTHEED THEEDsen theed PEDes (tai5) PEDem gePED ped
muNIC (ipal29/ipalityll/ OBlig (ation37/ated/
ipallyl) shuNISS NISStep niss ationail) OBlep fingOB ob
noVEM (ber95) geVEM VEMshe vem MESmer (isel) MEZmed sheMEZ mez
gaZEEB (00) reZEEB ZEEBeg zeeb BALcon (y7) BALketch terBAL bal
umBRELL (all) udBRELL BRELLev brell DAFFod (i11) DAFFent velDAFF daff
kiLOM (etrell) meLOM LOMedge lom PRIVil (ege38/eged10)  PRIVex mePRIV priv
ocTOB (er79) epTOBE TOBEk tobe DEStit (ute2) DEStlet steDES dess
seLEC (tion54/tivel9/ SOLit (ude3/aryl4) SOLeth beSOL sol
tively2) feLECK LECKeb leck VOLun (tary22/tarily9)  VOLeg teVOL vol
traJEC (tory2) kreJECK JECKrek jeck JAVel (in0) JAVez zeJAV jav
beLLIG (erent5/erence2/ RELeg (ate6) RELeng neREL rel
erentlyl) meLIDGE LIDGElIt lidge
coMMEM (orate6) teMEM MEMus mem Mean frequency:
riSOTT (00) kiZOT Z0Tem zot 14 (sd21)
orCHES (tral4) iKESS KESSetch kess
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