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Integrating Form and Meaning: A Distributed
Model of Speech Perception
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London, UK

We present a new distributed connectionist model of the perception of spoken
words. The model employs a representatio n of speech that combines lexical
information with abstract phonological information, with lexical access
modelled as a direct mapping onto this single distributed representatio n. We
!rst examine the integration of partial cues to phonological identity, showing
that the model provides a sound basis for simulating phonetic and lexical
decision data from Marslen-Wilson  and Warren (1994). We then investigate
the time course of lexical access, and argue that the process of competition
between word candidates during lexical access can be interpreted in terms of
interference between distributed lexical representatio ns. The relation
between our model and other models of spoken word recognition is discussed.

INTRODUCTION

The representation of information in a distributed manner is one of the key
assumptions of connectionist theory (Hinton, McClelland, & Rumelhart,
1986; Smolensky, 1988). Here, we describe and evaluate a model that applies
this assumption to the process of retrieval of lexical knowledge about spoken
words. The model represents lexical knowledge using a set of features that
encode information about the meaning and form of words.
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Previous models of speech perception (e.g. McClelland & Elman, 1986)
have generally employed an explicit ordering of information types, in which
typically one or more phonological  levels mediate between input
representations and lexical entries. This allows an explanation of selective
access to information in the lower levels, such as phonological information
about nonwords. Such ordering is redundant when applied to fully
distributed representations, since differences in the speed or success of
retrieval of different forms of knowledge can instead be modelled by the
partial activation of a distributed representation. Thus, the difference
between the perception of a word and a nonword is in the types of
information made available by the perceptual process. For a word, a
complete lexical representation can be accessed, including stored syntactic,
semantic and phonological information, whereas for a nonword, or for an
unfamiliar word, only the phonological  code is retrieved.

Our model eliminates explicit intermediate levels and treats lexical access
as a direct mapping from fairly low-level information about the speech signal
simultaneously onto a distributed substrate incorporating abstract
representations of both the form and the meaning of words. The model is
implemented using a simple recurrent network (Elman, 1990), for which
lexical representations are distributed patterns of activity on a set of output
nodes. Thus the network, rather than modelling the recognition of word
forms, concentrates on the retrieval of lexical phonological  and semantic
information, with explicit recognition being a secondary product, relevant
for psycholinguistic tasks such as lexical decision, rather than a goal of the
model.

A number of connectionist models have demonstrated aspects of lexical
processing using distributed semantic networks (e.g. Joordens & Besner,
1994; Kawamoto, 1993; Kawamoto, Farrar, & Kello, 1994; Masson, 1995;
Plaut, 1995; Sharkey & Sharkey, 1992). However, these models have focused
largely on processing within the lexicon rather than access to lexical
information. Where lexical access has been addressed, it has been modelled
as a mapping from static (orthographic) form representations onto meaning.
This ignores the transient nature of speech, making competition effects
during lexical access (e.g. Zwitserlood, 1989) impossible to incorporate.

The structure of the article is as follows. First, we discuss the assumptions
underlying our model and describe how these can be implemented in the
connectionist network. We then evaluate the performance of the network in
two ways. We examine the in"uence of matching and mismatching speech on
the retrieval of lexical knowledge by comparing the model’s behaviour to the
experimental study of Marslen-Wilson and Warren (1994) on the integration
of partial cues in lexical access. These data proved dif!cult to model in the
multilevel localist tradition, but can be accommodated by our model. We
then turn to more standard phenomena in the literature on spoken word
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1The position we take is at the opposite extreme of the continuum of information distribution
to the localist position, allowing us to highlight their contrasting predictions. However, we must
not forget that intermediate positions are also plausible.

recognition, showing how competition effects can be reformulated and
modelled in terms of interference between fully distributed patterns of
lexical representation.

A DISTRIBUTED MODEL OF SPEECH PERCEPTION

We intend to model the process of speech perception as a direct mapping
from low-level featural information onto a distributed representation of
lexical knowledge and form. The principal assumptions of the model are as
follows:

1. Lexical knowledge is represented in a fully distributed fashion.
2. Different forms of lexical knowledge (e.g. phonology, semantics) are

represented  in parallel and accessed simultaneously.
3. Speech input maps directly and continuously onto lexical knowledge.
4. The lexical access process operates with maximal ef!ciency.

The value of distributed representations in the modelling of cognitive
functions is well documented (e.g. Hinton et al., 1986; Hinton & Shallice,
1991). We envisage the representation of a lexical item to be a distributed
pattern encompassing its semantic, syntactic, morphological and
phonological speci!cation. The activation of a single complete lexical
representation involves setting the correct values for all representational
units. This view of the lexical access process differs radically from currently
popular models of spoken word recognition such as TRACE (McClelland &
Elman, 1986), Shortlist (Norris, 1994) and Cohort (Marslen-Wilson, 1987),
which view the selection of word candidates as a parallel localist process of
competition. Instead of mapping speech input onto many localist
representations, we shall explore the possibility that lexical selection
operates on a single distributed level of representation.1

Assumptions 2 and 3 are based on the proposals of Marslen-Wilson and
Warren (1994), which we shall discuss in detail in the following section. Our
intention is to produce a model of speech perception that treats all types of
information derived from the speech signal as outputs of the system, with
detail preserved in the mapping onto these forms of knowledge. These
assumptions !t very easily into a distributed learning approach. Although it
is possible to train connectionist networks to perform a multistage mapping
(e.g. Plaut & Shallice, 1993), it is often simpler and more desirable to restrict
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teacher input to the output level. This allows the network to develop
whatever intermediate representations are necessary to perform the
mapping effectively.

Our asssumption of maximal ef!ciency implies that at all points our model
must derive the most informative output available from its analysis of
incoming speech. Thus, if it is possible to isolate a single lexical match to the
current input (i.e. at the word’s uniqueness point), the relevant information
about that word should be extracted. At other points, where more than one
lexical entry matches the speech presented so far, the output of the model
should re"ect this ambiguity and activate the stored knowledge about these
candidates. Thus, the network should entertain in parallel multiple
hypotheses about the lexical identity of incoming speech, as do the majority
of current models of speech perception. However, the distributed nature of
the lexical representations used in our model places limitations on the
effectiveness of parallel evaluation of multiple candidates. Our model
assumes that speech is mapped more or less directly onto distributed
representations of lexical knowledge, implying that multiple lexical
candidates can only be evaluated by their in"uence on this level of
representation, rather than at some independent stage of competiton (as
assumed in models such as TRACE and Cohort). Since different lexical
candidates will generally have different lexical representations, this suggests
that they will interfere, producing a lexical “blend” of the various candidates
(Smolensky, 1986). We will address the consequences of these proposals in
some detail.

Network Architecture

The above assumptions translate readily into a description of the starting
state and processing environment of a connectionist network. The !rst three
assumptions de!ne the basic architecture of the model, while the maximal
ef!ciency assumption is ful!lled by the application of an error-reducing
learning rule to the mapping at all points during the processing of each word.
To allow the network to generalise over patterns of phonetic features spread
across time, our model is based on a simple recurrent network architecture
(Elman, 1990; Jordan, 1986). These networks are an extension of the
standard backpropagation procedure, having an extra set of input units
which hold a copy of the hidden units at the previous time-step. This
architecture has already proven valuable in the modelling of various aspects
of speech perception (Elman, 1990, 1993; Norris, 1992, 1993).

We trained the network on the mapping between a stream of phonetic
features and the internal representations of words (see Fig. 1). The featural
input is passed through a set of 200 hidden units, which have access via
recurrent links to the state of the hidden units at the previous time-step. The
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FIG. 1. A distributed model of speech perception.

hidden units are also connected to two sets of output units, representing the
semantics and phonology of the words contained in the speech stream.

Input Representation. The model’s input is a representation of the
speech signal. Ideally, this would be a set of features or parameters derived
directly from analysis of the speech wave (e.g. Stevens, Manuel, Shattuck-
Hufnagel, & Liu, 1992). The structure imposed on the model by such a
representation would be minimal, leaving the network free to develop
the necessary generalisations from the speech stream. However, the
computational cost of such an approach currently makes it infeasible. The
representation we have adopted instead is a compromise, designed to be
"exible and unintegrated  enough to accommodate some subphonem ic
spread of information, but categorical enough to allow training to be carried
out in a reasonable amount of time. Auditory input to the network was
represented on a set of 11 binary input units. These encoded the phonetic
features of the current input segment using the system of Jakobson, Fant and
Halle (1952). To simulate the experiments of Marslen-Wilson and Warren
(1994), which involved con"icting subphonem ic cues to place of articulation,
two additional input units were added. These allowed the representation of
vowel transition information.

Semantic Representation. The output nodes we have labelled
“semantic” encode a distributed representation of the stored non-
phonological knowledge about a word. This is a provisional means of
representing lexical information that has an arbitrary relationship with the
incoming speech, such as semantic or syntactic knowledge. We make no
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attempt to create a realistic representation of these forms of knowledge,
partly because of the infeasibility of such a task and partly because we wish
to focus on the basic properties of the lexical access process. The lexical
knowledge for any word is instead represented by a random binary pattern
of 0’s and 1’s.

This pattern could be thought of as a microfeatural representation of the
meanings of the words such that each value represents the relevance of that
feature to the word’s representation (Hinton & Shallice, 1991; Plaut &
Shallice, 1993). However, the representations we shall use differ from
microfeatural representations in an important way. For most simulations we
chose representations with 50% of units set to 1. These representations are
much less sparse than microfeatural representations, which generally only
have a small number of features on, with the remainder off. When we come
to examine the time course of competition in our model, we shall see that
variables such as sparseness have an important effect on the capacity of the
network to represent multiple meanings in parallel.

Phonological Representation. The second set of output units encodes a
representation of the underlying phonological structure of words. This is the
representation on which judgements of form are based and is treated as a
product of the perceptual mapping alongside semantic knowledge. This
single level may well display properties of both lexical and non-lexical routes
to phonological knowledge (cf. models of reading such as that of Seidenberg
and McClelland, 1989) and is available for phonological judgements on both
words and word-like nonwords. An important aspect of the choice of
phonological representation is its capacity to promote generalisation to
novel forms.

To satisfy this constraint, the phonological  output was based on the
representation of Plaut, McClelland, Seidenberg and Patterson (1996),
originally designed for their model of word naming. This is a compact
structured phonemic representation of monosyllabic words, divided into
three groups of units corresponding to the syllable onset, nucleus and coda.
Within each group, units generally represent single phonemes, with a small
set of units representing phoneme clusters such as /ts/.

Because of incompatibility problems between the input representation
and the phonemic representation of Plaut et al. (1996) (chie"y due to
differences in the representation of long vowels and diphthongs), that of
Plaut et al. was altered so that !ve vowels in the original representation were
represented by combinations of two vowels, presented sequentially on the
input units.

Training. Although the composition of the training sets varied from
simulation to simulation, the overall procedure remained the same. The
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corpus of words used in any particular simulation was translated into two
forms. The !rst form was a continuous sequence of phonetic feature bundles
representing incoming speech. The second was a sequence of the same
length, but represented the semantics and phonology of the words, as
described above. The second form was used for comparison with the
network output, allowing connection weights to be altered by
backpropagation of error. There were no gap markers between the words,
nor was the context layer reset during training. At all points during the
presentation of a word, the lexical knowledge about that word was available
for adjustment of weights.

General Performance

Before examining selected characteristics in detail, we shall review the basic
behaviour of the trained network. At each time-slice, a new set of phonetic
features is presented to the network, and the output vector is modi!ed to
accommodate the information provided by the input. Although the network
was trained to output the phonological  and semantic representations of each
word at every point within that word, it cannot actually carry out that task
when tested. This is because the identity of a word is often ambiguous early
on in the word, and in some cases even the position of the onset of the word is
ambiguous. What the network learns to do instead is to produce “cohort-
like” behaviour, where the output of the network represents the set of word
candidates compatible with the input so far (Content & Sternon, 1994;
Norris, 1990). At certain times (on or after the uniqueness point of a word),
this set has only one member, and the network can indeed output a vector
very close to the training vector for that word. At other times, the network
must entertain multiple hypotheses in parallel, until disambiguating
information is encountered.

These hypotheses are represented in different ways for the two
components of the output vector. The behaviour of the phonological output
is fairly simple. Assuming that the network can identify the onset of a word,
the network simply activates the phonemic nodes corresponding to the
segments presented so far. For example, when the /{ / of /k{ t/ (cat ) is
presented, the /k/ node in the onset section will be activiated close to a
maximum of 1.0, as will the /{ / node in the vowel section. Other nodes may
be activated more weakly, representing hypotheses about continuations of
the speech. So in this case, perhaps, the /p/ and the /t/ in the coda section of
the word would become slightly active, re"ecting the fact that cap and cat are
members of the network’s training corpus.

The output at the semantic level is more dif!cult to interpret, because of
the arbitrary relationship between the form of speech and word meanings.
Generally, the meanings of words in a cohort set will be unrelated, implying
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that their distributed semantic representations will have few similarities. In
these circumstances, deterministic networks output a “blend” of the
relevant representations (Smolensky, 1986), where the value of each
element in the output vector is the arithmetic mean (weighted by frequency
of presentation during training) of all the relevant training values for that
element. For example, at some point during testing, the input might be
compatible with just two words, gear (/gi@/) and geese (/gis/). The !rst !ve
elements of the random semantic vectors for these words are (1, 0, 0, 1, 1)
and (0, 0, 1, 1, 0). The network at this point should output the frequency
weighted blend of these two words. This will contain a 0 for the second
element and a 1 for the fourth element (since the representations match for
these elements), and will contain a value between 0 and 1 for the remainder,
with a bias towards the more frequent word.

The dynamical process of modifying this blend as information comes in
can be viewed in terms of movement through semantic space. The elements
of the semantic vector can be thought of as axes in a many-dimensional
space, in which word representations are !xed points. The changes in the
state of the output units represent movement through this space. Assuming
the elements of the semantic vector are binary, the network starts near the
middle of the space and moves outwards as more information is presented.
At all times, the network tries to !nd a point as close as possible to all the
matching candidates. (Again, this process is modi!ed by the relative
frequencies of the words, so the words presented often during training will
exert a greater “draw” than less frequent words.) As the number of
candidates is reduced, the output moves to the midpoint of the remaining
options and the distance from these representations decreases. Finally, at
the uniqueness point of the word, the output can move onto the !xed point
representing that word, remaining there until the onset of a new word is
reached.

This view of lexical access lends itself to comparison with localist
activation-based models (Marslen-Wilson & Welsh, 1978; Morton, 1969).
The “activation” of a word in the distributed model is inversely related to the
distance between the output of the network and the word representation in
lexical space. A zero distance is equivalent to the maximum activation,
whereas greater distances imply weaker activation. However, despite this
overall similarity, there are important differences in the way distributed and
localist systems model such an activation process. For example, in a localist
system, there is in principle nothing to stop two or more words having the
maximum activiation. The maximum activation in a distributed system is a
zero distance from the target vector (i.e. a zero error score), where the
output of the network exactly matches the representation of the word. But,
by de!nition, if the network output matches the representation of one word,
it must mismatch the representations of all words that do not share its
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representation, and so no unrelated word can also be activated to the same
extent. More generally, it is unclear whether the distributed blending
approach can really accommodate the experimental data on parallel
activation of meaning (Zwitserlood, 1989; Zwitserlood & Schriefers, 1995;
Moss, McCormick, & Tyler, this issue). We shall investigate these issues in
detail later in the paper.

THE PROCESSING ENVIRONMENT FOR SPEECH
PERCEPTION

In this section, we shall examine the competition dynamics of our model by
simulating two experiments from Marslen-Wilson and Warren (1994). Their
research takes a detailed look at the effects of mismatch on lexical access,
and poses a challenge for current models of speech perception. We shall !rst
review the main points of the experimental data and then go on to simulate
their experiments using the network model.

Experimental Data

Marslen-Wilson and Warren (1994) examined the integration of featural
cues to word identity in words and nonwords. In particular, the integration of
cues to place of articulation was examined, by cross-splicing monosyllabic
words and nonwords that contained con"icting cues to the place of
articulation of the !nal consonant. For example, subjects might hear a token
consisting of the initial consonant and vowel of jog, followed by the !nal
consonant burst of job. This stimulus contains information in the vowel to
!nal consonant transition that accords with a velar consonant (i.e. the /g/
from jog). However, the burst information indicates a bilabial consonant
(i.e. the /b/ from job). In cases like this, the burst information is dominant
and the spliced stimulus is perceived as a token of job. However, previous
research has shown that this featural mismatch can produce interference
effects in tasks such as lexical decision (Streeter & Nigro, 1979; Whalen,
1982, 1984).

Marslen-Wilson and Warren (1994) manipulated the lexical status of the
monosyllable from which the cross-spliced tokens were created. Triplets of
monosyllables containing either two words and one nonword (e.g. jog, job,
jod) or one word and two nonwords (e.g. smog, smob, smod ) were
cross-spliced to produce six types of stimulus (see Table 1). These stimuli
varied in terms of the presence or absence of mismatching cues and in terms
of the lexical status of the pre-splice and post-splice components. The
baseline conditions were two tokens of the same word or nonword spliced
together (e.g. job 1 job [W1W1] or smob 1 smob [N1N1]). For the
remaining conditions, the post-splice token was held constant (either W1 or
N1) and the pre-splice token was manipulated to create four conditions of
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2These results are based only on the stimuli ending with a voiced stop. A fuller description of
the results can be found in Marslen-Wilson and Warren (1994).

TABLE 1
The Experimental Contrasts of Marslen-Wilson and

Warren (1994)

Lexical Status Code Example

Word sequences
Word1 1 Word1 W1W1 job 1 job
Word2 1 Word1 W2W1 jog 1 job
Nonword3 1 Word1 N3W1 jod 1 job

Nonword sequences
Nonword1 1 Nonword1 N1N1 smob 1 smob
Word2 1 Nonword1 W2N1 smog 1 smob
Nonword3 1 Nonword1 N3N1 smod 1 smob

Note: The underlined sections represent the segments
spliced together to create the stimuli.

mismatch, which differed on the lexical status of the two components (e.g.
jog 1 job [W2W1], jod 1 job [N3W1], smog 1 smob [W2N1] or smod 1
smob [N3N1]).

Three experiments, using lexical decision, gating and phonetic decision
tasks, examined the perceptual consequences of these manipulations.
Concentrating on the lexical and phonetic decision experiments, which
illustrate the results most clearly, we !nd an interesting effect of the lexical
status of the pre- and post-splice tokens (see Fig. 2).

In the lexical decision experiment, where subjects made a timed “yes/no”
response to the cross-spliced stimuli, there were inhibitory effects of
mismatching cues for all conditions made up from at least one word token. In
other words, “yes” responses to W2W1 and N3W1 stimuli were slower than
for the W1W1 baseline, and “no” responses to W2N1 stimuli were slower
than for the N1N1 baseline. Crucially, however, the mismatching cues in the
N3N1 condition did not slow responses signi!cantly.2 The mismatching cues
to the word-!nal place of articulation had no effect when both pre- and
post-splice cues were taken from nonword stimuli.

A surprisingly similar pattern was found when subjects were asked to
make a timed, forced-choice phonetic decision on the !nal consonant of the
stimuli. The alternatives were compatible with either the pre- or post-splice
phonetic cues to the !nal consonant. Since burst information dominates in
the perception of phonological  form, subjects generally responded with the
interpretation that agreed with this information. However, the speed with
which this response was made depended in part on the information in the
vowel transition. As in the lexical decision experiment, there were inhibitory
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FIG. 2. Summary of the phonetic decision (n) and lexical decision (N) experiments of
Marslen-Wilson and Warren (1994). Only the data for the voiced-stop stimuli are plotted.
(a) The data for the word triplets; (b) the data for the nonword triplets. Response times were
measured from the splice point.
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effects for all conditions involving mismatch with at least one word. There
was also some inhibition for the mismatching stimuli made up from two
nonwords (N3N1), but this mismatch effect was signi!cantly smaller than for
the W2N1 condition.

In summary, effects of featural mismatch in both lexical decision and
phonetic decision tasks are strongly in"uenced by lexical factors, with little
or no mismatch effect for stimuli made up of two different nonword tokens.
These results seem dif!cult to square with a view of lexical access which
feeds off an autonomous segmental representation of incoming speech. Such
a theory predicts that all mismatching conditions would have a similar
disrupting in"uence on the word recognition process and would inhibit both
phonetic and lexical decisions in a similar manner.

Marslen-Wilson and Warren (1994) argue that their results are best
accommodated by a model of word recognition in which featural
information is mapped directly and continuously onto lexical
representations (Klatt, 1989; Stevens, 1986; Warren & Marslen-Wilson,
1987, 1988). The absence of a pre-lexical level of feature integration, such as
a phoneme level, provides a simple explanation of the pattern of mismatch
effects found in the lexical decision experiment. For the word sequences, all
mismatching tokens delay responses because they reduce the goodness of !t
to the target word. For the nonword sequences, response times depend on
how well the tokens match the nearest lexical item, which in this case is W2.
Thus the W2N1 tokens delay responses because they are more similar to a
word than the N1N1 baseline. However, the N3N1 tokens do not delay
responses because they are equally dissimilar to the nearest word as the
N1N1 baseline. The ambiguity of the phonemic structure of the N3N1
tokens is irrelevant for this model because phonemic information is not
integrated before contact with lexical representations.

Marslen-Wilson and Warren (1994) also argue that the phonetic decisions
are based largely on lexical knowledge of phonological  form, which explains
the close similarity between the results of the two experiments. However,
this explanation is problematic in itself, since, in its simplest form, the model
they advocate does not provide a basis for phonetic or phonological
decisions based on nonwords. To solve this problem, they propose that
phonological representations of nonwords are based on analogy to lexical
forms, drawing on arguments used in connectionist models of word naming
(Seidenberg & McClelland, 1989).

Network Simulations

The data of Marslen-Wilson and Warren (1994) pose two challenges for our
model of speech perception: to provide a basis for phonological  decisions on
words and nonwords that is not pre-lexical and to explain the pattern of
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mismatch found in their lexical and phonetic decision experiments. In this
section, we show that the assumption of a continuous mapping process from
featural input onto parallel distributed lexical representations allows these
challenges to be met.

Training Corpus. The network was trained to extract the phonological
and semantic information for a set of 36 monosyllabic words drawn from
Marslen-Wilson and Warren’s (1994) test words. These comprised the
unspliced words required to create 24 spliced triplets (12 word triplets and 12
nonword triplets) for testing. All words ended with a single consonant which
was either a voiced (/d/, /b/ or /g/) or an unvoiced (/t/, /p/ or /k/) stop. These
words were presented as input to the network in the form of bundles of
phonetic features. All test words consisted of either four or !ve segments.

To maintain a more realistic competitor environment for the test items, a
number of other words were added to the training corpus. Since we were
predominantly interested in the network’s evaluation of word-!nal
consonants, a set of 71 close cohort competitors was added, which shared the
initial onset and vowel segments with the target words but diverged on the
!nal consonant cluster. These ensured that the test words had an average of
3.5 close competitors (range 0–10). This is not a realistic overall competitor
environment, but it ensures that even at the ends of the test words, there
remained strong competition between lexical candidates.

In addition, the token frequencies of the training set were manipulated.
Corpus analyses of English (e.g. Johansson & Ho"and, 1989) reveal a
skewed distribution of token frequencies— a small number of words occur
very frequently, whereas the vast majority of words have very low token
frequencies. The training corpus was structured to re"ect the gross statistics
of this situation. The test words were all given a token frequency of 20 within
the training corpus, preventing any frequency effects from obscuring the
object of the simulations. The cohort competitors were then assigned
random frequencies between 1 and 40, with a mean frequency of 20. A
further 2998 monosyllables,  taken from the simulations of Plaut et al. (1996),
were added to the training corpus, with a token frequency of 1. The
low-frequency words ensured that the network was exposed to a
representative range of phonological  forms, allowing it to generalise to
novel (nonword) forms. However, we did not expect the capacity of the
network to be great enough to learn the semantic representations of these
words, because of the arbitrary nature of the phonology to semantics
mapping. The corpus of just over 5000 tokens was presented to the network
60 times during training, implying that the network was trained on 300,000
monosyllabic tokens.

Five separate networks, with different initial weights, were trained using
this corpus. The results of the simulation were highly consistent across
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networks and the analyses we present are based on the average values over
all !ve simulations.

Simulating Coarticulation. Successful simulation of the data of Marslen-
Wilson and Warren (1994) relies on the presence of cues to place of
articulation spread over a period of time (or processing cycles in the case of
the network). To simulate this coarticulatory spread of place information
between consonant and preceding vowel, we added two extra features to the
11 features standardly used by Jakobson et al. (1952). These features are set
to zero for all segments except vowels immediately preceding nasal or stop
consonants. For these vowels, the two features represent the place of the
following consonant, mirroring the diffuse and grave feature values for that
consonant.

This system does not allow the following consonant to be identi!ed on
presentation of a “coarticulated” vowel, but it does indicate its place of
articulation: velar, coronal or bilabial. However, the completely
deterministic use of these cues still overestimates the informativeness of
coarticulatory place cues in vowels. The duplication of place feature-value s
from consonants to preceding vowels does not re"ect the !nding that vowel
transition cues to place are weaker than the corresponding cues in the
consonant burst. This !nding is evident from the results of Marslen-Wilson
and Warren (1994), as well as from many other studies (e.g. Martin &
Bunnell, 1982; Streeter & Nigro, 1979; Warren & Marslen-Wilson, 1987,
1988). First, burst place cues nearly always dominate the resultant
perceptual experience of cross-spliced tokens. Secondly, in gating studies of
normal speech, subjects frequently mistake the place of articulation when
asked to make judgements on tokens with burst information removed. In
contrast, subjects almost never mistake the place of articulation of burst
information, even when the preceding vowel transition cues mismatch. For
example, in the gating study of Marslen-Wilson and Warren (1994), only
55% of responses to N3N1 stimuli at vowel offset were consistent with the
cues to consonant place in the vowel. At the offset of these stimuli, almost all
responses were compatible with the place of the burst.

To accommodate this difference in informational content, we made the
place cues in the vowel probabilistic . These cues were correct (i.e. agreed
with the place of the consonant) 70% of the time, with the remaining 30% of
vowel cues consistent with either of the other two places of articulation used
in the stimulus triplets.

Training and Testing. The network illustrated in Fig. 1 was trained on 50
sweeps through the corpus of roughly 5000 tokens described above. On each
cycle, the 13 input nodes were activated with the phonetic pattern of one
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3Experimentation with the number of hidden units con!rmed that the degree of success at the
semantic mapping depended strongly on the number of hidden units. However, increasing the
number of hidden units also led to impractically long training times.

segment of a word (modi!ed as described above). The copy-back units,
holding the activations of the hidden units at the previous cycle, also acted as
input units. The activations of the 200 hidden units and the 102 output units
(50 semantic units, 52 phonological units) were updated and compared to
the training pattern, which consisted of the full semantic and phonological
patterns for the current word. This means that right from the presentation of
the !rst phoneme of a word, its full phonological  representation was
available as a teacher signal. Backpropagation of error was then used to
adjust the weights of the connections in the network (Rumelhart, Hinton, &
McClelland, 1986). The training output for a word remained constant
throughout the presentation of each of its constituent segments. Each word
followed on from the previous word without a gap and without resetting the
context units.

The connection weights developed during training must allow the
network to perform two operations. First, the network must act as a kind of
buffer, collecting input over multiple time-slices to allow words to be
recognised. Secondly, it must encode the phonological  and semantic
patterns for each word. Performing the semantic side of this mapping is
particularly costly in terms of network resources because it is an arbitrary
mapping. Our expectation was, therefore, that the number of hidden units in
the network would be too few for it to isolate the correct output pattern for
the vast majority of the low-frequency words, which were included in the
training corpus to ensure that the network was exposed to a wide range of
phonological forms.3

The basic performance of the trained network was tested by presenting
the 107 test and competitor words to the network in a novel order. These
words varied in frequency between 1 and 40 instances per epoch. To gauge
the overall success of the training, the output of the network was recorded on
presentation of the !nal phoneme of each word and compared to the training
values. For 86% of the test set, the network output was closer (in terms of
root mean-squared distance) to the full target vector (including both
semantic and phonological representations) for that word than to any other
target vector from this set. Of the 15 cases where this was not the case, seven
involved stimuli that were still ambiguous at offset (e.g. bell, where belt was
also part of the training set). A further !ve were low-frequency words (all
had a corpus frequency of 5 or less per epoch). For these items, the network
often extracted the phonological  representation, but not the semantic
representation. Finally, for three words there was no obvious pattern to the
network’s response.
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4Much the same pattern of results is found when lexical decision is based on the entire output
vector. This is because the target words and their most active competitors are phonologically
highly similar, and thus including the phonological dimensions of the output vector does not, in
this case, help to discriminate between them.

In summary, two factors interfered with the capacity of the network to
perform the task. First, stimuli that were onset-embedded in other words
could not be recognised properly at offset. This is a property of the dataset
rather than the model and we shall return to this issue later. Secondly, words
which had a low frequency were also not learned well, with the phonology of
the words often extracted, but not the more arbitrary lexical representation.
This is a consequence of limiting the resources available to the network—if
there is a limit on the number of arbitrary mappings the network can learn,
then it only learns the ones that are presented most often during training.

The network was then tested on a set of stimuli designed to simulate the
test conditions of Marslen-Wilson and Warren (1994; see Table 1). The
W1W1 and N1N1 baseline stimuli all contained vowel place cues that
matched the place of the following segment. All other stimuli contained
mismatching cues to the place of articulation of the !nal consonant. For
example, a W2W1 stimulus contained place information in the vowel that
was consistent with the W2 word combined with the !nal consonant of W1.
Only the word tokens had been presented to the network during training.
The test words were presented to the network in a random order, with each
test item preceded by the same two !ller words. This ensured that the
activations of the context units were equivalent at the start of each test word.
The phonological  and semantic activations were recorded at each time-step.

Lexical Decision. When comparing the model with the experimental
data, we shall assume that output error scores (the discrepancy or distance
between the network’s output and the target output) correlate with response
times derived from an attractor-based settling system (see Plaut et al., 1996,
for a test of this assumption), and that a lexical decision response depends
predominantly on the semantic rather than phonological output of the
model.4

In the interpretation of activation-based models of word recognition, we
are faced with the question of whether decisions should be based on
activations in absolute terms (e.g. Morton, 1969) or relative to the set of
competitors (e.g. Luce, Pisoni, & Goldinger, 1990; Marslen-Wilson, 1987).
For distributed models, the same choice occurs—absolute activations
correspond to absolute distance values, whereas relative activations
correspond to relative distances. We looked at both absolute and relative
values in the lexical decision simulation and found highly similar patterns of
results. For the sake of brevity, we will report only the relative values.
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Using the relative !gures, we must assume that a “yes” response in a
lexical decision task relies on the successful isolation of a single lexical item
that matches the current speech input. More speci!cally, the output of the
network must become suf!ciencly closer to a single word representation
than to all its competitors. This is analogous to reaching a threshold
separation between the most active localist candidate and its more weakly
activated competitors—at this point, we can say that the network has
isolated a single word as matching the speech input.

The network’s predictions for lexical decision “no” responses are less
obvious. The simplest option is to assume some kind of deadline for reaching
the threshold separation, after which a “no” response may be made.
However, this cannot be correct, because many experiments (including the
ones we wish to model) show variations between experimental conditions in
the time taken to make a “no” response. The original Cohort model
(Marslen-Wilson & Welsh, 1978) assumed instead that a token could be
rejected as a token of a word as soon as the cohort of matching candidates
was reduced to zero. Unfortunately , our current model does not allow such
an explicit prediction. This is partly because the dichotomy between
membership and non-membership of the Cohort is broken in our model (cf.
Marslen-Wilson, 1987) and partly because the model is operating on
continuous speech and may predict that the end of a nonword is in fact the
beginning of a word, weakly activating a large number of words. These are
both desirable properties of a model of speech perception, but make the
modelling of lexical decision data more dif!cult. We shall nonetheless
adhere to the spirit of the original Cohort model, by assuming that active
words (which do not reach the threshold separation) will delay “no”
responses. When the output of the network is close to a word in semantic
space without ever getting close enough to generate a “yes” response, it will
delay the rejection of the current input as a word.

Figure 3 illustrates the behaviour of the network’s semantic output vector
as the test items are presented. The x-axis represents the time course of
presentation of a test word, with a single phoneme presented to the network
at each time-step. Within each triplet, the stimuli are identical up to word
position 22. At position 21, the vowel is presented to the network, along
with the probabilistic  coarticulatory information about the !nal consonant
(equivalent to the pre-splice cues in the experimental stimuli). At position 0,
the deterministic information about the !nal consonant is presented
(equivalent to the post-splice cues in the experiment). The solid lines plot
the separation of W1 from its competitors for the word triplets and the
dashed lines plot the separation of W2 from its competitors for the nonword
triplets. Separation values were calculated by subtracting the RMS distance
between the output vector and the target from the distance to the nearest
non-target word representation. A positive value for this measure indicates
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FIG. 3. Results of the lexical decision simulation. Each curve plots the mean distance from the
target semantic representations relative to the nearest competitor for one experimental
condition. The x-axis marks the time course of presentation of stimuli, with the !nal consonant
(post-splice cues) presented to the network at position 0 and the vowel (pre-splice cues)
presented at position 21. c , W1W1; ¶ , W2W1; n , N3W1; C , N1N1; n, W2N1; N , N3N1.

that the network output is closer to the target than any competitor. We
assume that word recognition would depend on a critical separation being
reached.

For the word triplets, the model should “recognise” W1 to predict a “yes”
response in a lexical decision. For the nonword triplets, the network should
reject the input as a token of a real word and predict a “no” response. For
these stimuli, W2 is phonetically the most similar word to the input stimulus
and so is the most dif!cult to reject.

As Fig. 3 illustrates, there is a clear partition of the words and the
nonwords by word position 0 (the end of the word). For the word stimuli, the
network always ends up much closer to W1 than any to other word, whereas
for the nonword stimuli, no single word becomes suf!ciently separated from
its competitors (i.e. the relative distances remain close to the zero line).
Provided we choose a suitable critical separation level for making a “yes”
response (between 0.1 and 0.23), the word tokens should be accepted and
the nonword tokens should be rejected. Furthermore, within each triplet,
the pattern of results is similar to the experimental pattern. For the word
triplets, the W1W1 condition is the baseline. Here, as the featural
information is presented, the separation of W1 from its competitors
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increases, reaching a maximum at the end of the word of 0.33 (that is, the
output of the network is 0.33 distance units closer to W1 than to any other
word). In contrast, both cross-spliced tokens result in reduced activation of
the W1 target (a weaker separation of W1 from its competitors), mainly on
presentation of the mismatching coarticulatory information in the vowel.
The patterns for these two tokens are highly similar, with slightly more
mismatch for the W2W1 than the N3W1 token. Thus the delay in reaching
the critical value for a “yes” response should be roughly the same for both
conditions of mismatch. This !ts the pattern of human response times
illustrated in Fig. 2.

For the nonword triplets, all activations hover around the zero line,
suggesting that W2 never becomes suf!ciently separated from its
competitors to generate a “yes” response. Looking at the differences
between the three conditions, W2 is best activated by the W2N1 token. The
increased activation of W2 for this condition would predict “no” responses
should be slower than for the baseline condition (N1N1) and the N3N1
condition, which show similar patterns of response. Again this matches the
pattern of results found in the lexical decision experiment (Fig. 2). Crucially,
the lack of coherence between the cues to place in the N3N1 condition has
little effect on the network’s response relative to the N1N1 baseline. In terms
of their similarity to the closest word (W2), the N3N1 and N1N1 conditions
are equivalent— they both mismatch in terms of the pre-splice and post-
splice cues. Because these cues are not integrated before the mapping onto
lexical information, their coherence or lack of coherence does not play a
part.

Phonetic Decision. The translation from localist phonemic output
values to predictions of phonetic decision responses is a comparatively
straightforward matter: The network’s predictions should depend on the
relative activations of the word-!nal phoneme nodes involved. We shall
assume that the network’s response to word-!nal ambiguities in a forced-
choice task depends only on the activations of the three segments in the coda
output group that share the manner and voicing of the ambiguous segments,
but vary in place of articulation. For example, the network’s predicted
response (both in terms of choice of response and time taken) to the stimulus
token jog, constructed from the onset of job and the !nal burst of jog, would
depend on the relative activations of the /b/, /g/ and /d/ nodes in the coda
group of the phonological output units. The activations of other units within
this group are minimal and unaffected by the experimental manipulations.

Figure 4 plots the difference between the activation of the target segment
(the segment that agreed with the post-splice cues in the stimulus) and that
of its nearest competitor from the three relevant nodes in the coda section of
the phonological  output (either /b/, /g/ and /d/ or /p/, /k/ and /t/). This relative
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FIG. 4. Results of the phonetic decision simulation. Relative activation values were calculated
by taking the activation of the target segment and subtracting the activation of its most active
competitor from the bank of three word-!nal stop units sharing the target voicing (either /d/, /b/
and /g/ or /t/, /p/ and /k/). c , W1W1; ¶ , W2W1; n , N3W1; C , N1N1; , W2N1; N , N3N1.

activation measure ranges from 21 (implying that the target has a zero
activation and a competitor is fully activated) to 1 (implying that the target is
fully activated and both competitors have zero activation). Comparison of
the word and nonword triplets shows a strong effect of lexical status on the
network response, which overshadows the effects within each triplet. For all
word sequences the !nal relative activation is above 0.8, while for the
nonword sequences the !nal activation varies between 0.32 and 0.49. This
implies that responses should be slower for the nonword sequences than for
the word sequences. A signi!cant lexical effect was also found in the
experiment of Marslen-Wilson and Warren (1994), but across conditions
nonwords were only 23 msec slower than words, whereas the effects of
mismatch within the word and nonword conditions were as much as
133 msec.

Aside from this overall difference between the responses to word and
nonword sequences, the patterns within the two sequence types are
reasonably similar. Compared to the baseline conditions, the patterns
involving nonword onsets (i.e. N3W1 and N3N1) produce mismatch effects,
but these mismatch effects are weaker than for the mismatching conditions
with word onsets (i.e. W2W1 and W2N1). This pattern of results !ts the
response time data for the nonword sequences well (since the mismatching
effect of the W2N1 stimuli was roughly twice that of the N3N1 stimuli),
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although it slightly underestimates the effect of mismatch for the N3W1
condition (see Fig. 2). Even in the phonetic decision simulation, the effects
of mismatch for two nonwords spliced together is weaker than for a word
spliced onto a nonword. Here, the difference can be thought of as a lexical
effect. The network has a strong preference for activating the phonological
representations of words over nonwords (because all the training patterns
are words). This means that when the vowel transition cues of a W2N1
stimulus are presented, there is a strong bias in the network towards a
phonological response consistent with W2, which is inconsistent with the
place of the !nal segment. For a N3N1 stimulus, the lexical bias is weaker or
non-existent  on presentation of the vowel transition, because the
information received so far is already inconsistent with the phonological
representation of any word. This makes it easier to switch to the place of N3
when the !nal consonant is presented, reducing the mismatch effect.

Summary of Results. Figures 5 and 6 summarise the network simulations
(based on !ve separate training runs), illustrating a comparison between the
experimental results of Marslen-Wilson and Warren (1994) and a
transformation of the network output. For each graph, the experimental
response times are plotted on a millisecond scale and the predictions derived
from the network are plotted on an arbitrary interval scale (i.e. the zero
value does not correspond to a zero response time). For 9 of the 12
experimental conditions (the 6 conditions in the phonetic decision
experiment and the 3 word conditions in the lexical decision experiment),
the network’s predictions can be derived using threshold values, by
interpolating  the time course graphs in Figs 3 and 4. The threshold values for
the lexical and phonetic decision simulations were chosen so that the
predicted response times for the W2W1 conditions in the two tasks were
equated (since the response times for these conditions were also the same).
Each threshold value would be represented by a horizontal line in Figs 3 and
4. The correlate of response time in each condition can then be read off by
!nding the point on the x-axis at which the curve for that condition crosses
the threshold (see Fig. 5).

For the remaining three conditions (the nonword conditions of the lexical
decision simulation), a threshold model is not applicable. Instead, we simply
plotted the separation values for W2, summed across the !nal two time-steps
(the only points for which the stimuli diverge). The assumption underlying
this comparison is that a larger separation value (implying a greater
activation of W2) will inhibit a “no” response, resulting in a longer response
time (see Fig. 6). Unfortunately,  there is no obvious way to relate these
values to the predictions derived from the word conditions.

Overall, there is a high level of agreement between the network’s
predictions and the experimental data. Within each triplet of conditions, for
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FIG. 5. Comparison between the experimental data (n) and the simulation results (C) for the
phonetic decision and word lexical decision data. The experimental data use the millisecond
scale on the right-hand side and the simulation data use the scale on the left-hand side (see text
for an explanation of how these were calculated).

FIG. 6. Comparison between the experimental data (n) and the simulation results (C) for the
nonword lexical decision data. The experimental data use the millisecond scale on the
right-hand side and the simulation data use the scale on the left-hand side (see text for an
explanation of how these were calculated).

both lexical and phonetic decision simulations, the correct pattern of results
is obtained. The only obvious discrepancy between the simulations and the
experimental data is in the nonword conditions for the phonetic decision.
Here, the pattern within the nonword conditions is correct (in that the effect
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of mismatch in the W2N1 condition, compared to the baseline N1N1, is
roughly double the effect for N3N1, but the predicted response times are all
much higher than the actual values. This re"ects the fact that phonological
activations of segments that combine to form nonwords are much lower than
those that form words. This problem is similar to the problems highlighted
by Besner, Twilley, McCann and Seergobin (1990) for Seidenberg and
McClelland’s (1989) model of reading (i.e. mapping from orthography to
phonology), where performance on items used during training was good, but
generalisation to nonwords was much worse than human performance.

Plaut et al. (1996) showed that better performance was possible on the
reading task when a network was used which allowed a greater degree of
interaction within and between levels. This allowed the network to develop
attractors based on the subregularities involved in the mapping from
orthography to phonology and was thus able to generalise better to other
orthographic patterns. A similar modi!cation applied to the feature-to-
phoneme mapping could well produce better performance on the
phonological layer for nonwords.

A second reason for the weaker activation of phonological  output units
for nonwords is unique to models of speech perception. Our network was
trained on a continuous stream of speech, with no gaps or physical cues to
the onsets or offsets of words. This re"ects the situation that the human
language learner is faced with, in which words are generally spoken in
utterance context rather than in isolation. However, there is little doubt that
to the fully developed perceptual system, silence at the beginning or end of a
word (along with a corresponding lack of coarticulation) is valuable
information. Because we had trained the network without gaps between
words, we also had to test the network with a continuous stream of tokens
(interspersed with !ller words). In the evaluation of nonwords, this lack of
word boundary cues makes the task of the network particularly dif!cult. For
example, the /b/ in the token smob could, quite plausibly, be a word-initial /b/
following on from the nonword smo. Thus, there is ambiguity as to whether
the network should activate the /b/ node in the onset or the coda section of
the phonological  output vector. For humans, this ambiguity is not present
because they can make use of the silence before and after the speech to
determine the syllabic position of the /b/. We expect, therefore, that if we
introduced a small proportion of gaps between words in the training set and
then tested the network on isolated words, the phonological  performance on
nonwords would be improved.

To summarise, our objectives in this section were to explain the pattern of
match and mismatch found in the earlier experiments and to provide a single
basis for representing both words and nonwords. Both these objectives were
achieved. The network successfully simulated the pattern of mismatch found
in the lexical and phonetic decision experiments of Marslen-Wilson and
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5TRACE incorporates lateral inhibition between word nodes to prohibit such a state, but this
is an optional rather than a fundamental property of a localist system.

Warren (1994). Compared to the baseline conditions, the amount of
mismatch predicted by the network depended strongly on the lexical status
of the pre-splice and post-splice components. In the case where both these
components were spliced from nonwords, there was no effect of mismatch in
the lexical decision simulation and a reduced effect of mismatch in the
phonetic decision. The model is able to accommodate these data because it
allows speech information to map directly onto lexical knowledge, without
having to !rst integrate partial cues to phonemic identity.

The perception of phonological form is carried out in parallel with the
access to semantic knowledge. This provides a single representational basis
for the perception of words and nonwords alike. Nonwords access the same
level of representation as words, but less completely. Lexical effects on
nonword perception can thus be observed without recourse to interactive
top-down "ow of information (Norris, 1993). At present, the performance of
the network on nonwords is not optimal, and predicts longer reaction times
in the phonetic decision experiment than were actually found. However, we
expect that improvements in the network architecture and training regime
will lead to better nonword performance.

THE TIME COURSE OF LEXICAL ACCESS

In this section, we investigate the basic properties of the model and compare
them to our knowledge of the human system. There are now a number of
properties of the lexical access system that are generally agreed on by
researchers in the !eld. One of these is the assumption that as words are
heard, the meanings of multiple candidates are activated (Marslen-Wilson &
Zwitserlood, 1989; Zwitserlood, 1989). The state of these activations, and
consequently the recognition point of a word, depends on the interaction
between sensory input and factors such as competitor environment and
word frequency (Luce et al., 1990; Marslen-Wilson, 1987, 1990).

Multiple Lexical Candidates

At !rst sight, distributed representations seem inadequate for the
simultaneous activation of multiple lexical candidates. In a localist system,
such as the word level of TRACE, the activation of multiple candidates is
simple, since each word in the model’s lexicon has its own separate node. If
during lexical access three word candidates match the speech input so far,
this can be represented in a localist system by completely activating all three
words.5 In a distributed system, all words are represented on the same nodes,
so only one word can be perfectly represented at any one time. Two or more
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6The network was trained on a set of monosyllables designed to create a realistic competition
environment for a single word-initial cohort (words beginning with /g/). The training set is
described in the following section.

FIG. 7. Time course of semantic activation for the word grouch. Each line plots the distance
from the network output vector for a selected word.

representations will interfere and can only be represented on the same nodes
imperfectly. We will argue that this interference, far from being a problem, is
an integral part of the word recognition process, since effects of factors such
as competitor environment and word frequency fall naturally out of such a
representational system.

Figure 7 illustrates the time course of activation at the semantic level as
the sequence /graUtS/ (grouch) is presented.6 Each line shows the distance in
semantic space between the output vector and a selected word
representation. On presentation of the !rst segment, the network !nds a
vector that is roughly equidistant from all words (i.e. in the middle of the
space). As more information is presented, the output vector moves closer to
the matching words and away from the other words. This continues until, on
presentation of the !nal segment, the network isolates the semantic
representation of grouch.

This demonstrates a number of features of the model. First, the model
shows evidence of the parallel activation of multiple candidates, with the
distance from these candidates related to the number of candidates
remaining active. When /U/ is presented, the semantic vector is roughly 0.45
from four matching words. Later, the vector is slightly closer to the two
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remaining matching words. However, only when the uniqueness point of the
word is reached does the distance from the target word approach the
minimum distance of 0. This behaviour differs from the old, localist Cohort
model, where all word candidates matching the initial portion of the speech
input (the word-initial cohort) are given a high activation value (equivalent
to a low distance value) and the matching process involves the reduction of
the activation of candidates that mismatch incoming speech.

The requirement that the network extracts the maximum lexical
information at all points during word recognition causes the network to
activate multiple lexical candidates, by constructing a blend of their
representations (Kawamoto, 1993). Gaskell (1996) used statistical analyses
of randomly populated vector spaces to examine the consequences of a
distributed approach to parallel activation. The analyses showed that there
is an upper limit to the number of words that can be informatively activated
in this way. As the number of distributed patterns represented by the blend
vector increases, their advantage over other randomly chosen patterns, in
terms of similarity to the blend, decreases. In distance terms, there comes a
point where the blend is closer to randomly chosen patterns than to some of
the patterns it is supposed to represent. This is like having a version of the
Cohort or TRACE models in which, at the start of a word, many cohort
members have lower activations than non-cohort members. It does not
mean that a distributed model cannot cope with a cohort-like selection
process, but it does imply that the state of the output vector (e.g. the
activation of the semantic units) will not portray the state of competition
properly when many candidates match speech input early on in the
processing of a word. Our model predicts that the degree of semantic
activation engendered by a word-onset fragment should depend strongly on
the number of words containing that onset. When there are many matching
candidates, semantic activation will be weak or non-existent .

Gaskell (1996) also showed that this capacity was affected by both the
structure and content of the lexical system. The number of dimensions in the
representational space correlated positively with the capacity for multiple
activation, so that a larger-dimensional space could cope with more patterns
activated in parallel. However, increasing the sparseness of the
representational system (e.g. by using a microfeatural semantic
representation) acted in the opposite direction, reducing the limit on
informative multiple activation.

The pattern of clustering of word representations in lexical space also
affected performance. Initial simulations were carried out with randomly
chosen distributed representations. This tends to produce an even
distribution of representations within the lexical space. However, if this
space encodes similarities between word meanings, it is unlikely to be evenly
distributed. For example, the meaning of the word apple is likely to have
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much in common with the meanings of other types of fruit, but little in
common with the vast majority of word meanings. If this structure is
preserved in the distribution in lexical space, then the problem of activating
multiple meanings is compounded, since highly similar patterns of activation
are more confusable than less similar ones. The exception to this rule is when
the clustering encodes phonological information. In this case, the patterns
that need to be activated in parallel (the representations of the cohort
members) form part of the same cluster, which makes it easier to construct a
vector that is close to those representations and relatively far from other
representations.

Competitor Effects in Lexical Access

To illustrate the results of the statistical analyses reported in Gaskell (1996),
an investigation  was carried out into the effect of candidate set size on lexical
activations in the full model. We trained the network on a subset of English
monosyllables designed to create a realistic competitor environment for a
single word-initial cohort. The training set consisted of all the words in Plaut
and co-workers’ (1996) set of monosyllables that began with the phoneme /g/
(n 5 161), plus all the words (n 5 115) that were entirely embedded in one or
more of the /g/ cohort set (e.g. ape in gape or grape).

This set of stimuli provide a reasonably realistic competitor environment
for a single cohort of words, while remaining within the bounds of the
monosyllabic phonological  representation used at the output level. Since we
wanted to look purely at the effect of the number of competitors, all training
words were given an equal frequency of presentation during training. To
reduce the co-occurrence strength between these words, 20 tokens of each
word were assigned a random order in the training corpus, which was
presented to the network 70 times during training.

The 161 training words beginning with /g/ were split into cohort
competitor sets based on their !rst and second segments. The 11 sets varied
strongly in their size, from the two words beginning /gi/ (gear and geese) to
the 59 words with the onset /gr/. One word was selected from each of these
sets to examine the effects of cohort size on the time course of activation. All
test words were three segments in length and nine of them became unique on
their !nal segment, while the other two words (from the largest of the
competitor groups) remained ambiguous at offset due to the presence of
longer embedding words in the training set. Thus the 11 test words were
controlled for the cohort competitor environment of their !rst and third
segments and varied on the number of cohort competitors at the second
segment.

These words were presented to the trained network in a random order
interspersed with repeated !ller words, which ensured that the state of the
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FIG. 8. Results of the competition simulation. The data for 11 three-segment words are
plotted, with each word occupying a position on the x-axis corresponding to the inverse of the
size of its cohort competitor set (the set of words matching the test word on its !rst two
segments). For nine words, the RMS distance between the semantic output vector and the
target representations of those words on presentation of all three segments are plotted. For the
remaining two words, only the data for the !rst and second segments are plotted.

context units was the same before each test word. The output of the network
was recorded at each time-step, with semantic outputs translated into
distance values. Our expectation, based on the earlier analyses, was that at
the point where the competitor environments of the test words differed (i.e.
on the presentation of the second segment of each word), the distance from
the output of the network to the target word would be inversely related to
the number of cohort competitors. In other words, when a test word is one of
many matching candidates, the output of the network will be relatively far
from that word. With this outcome in mind, we carried out a Pearson
correlational analysis between the distances and the inverse of the cohort set
size at each word position (see Fig. 8).

On presentation of the second segment, we found a strong negative
correlation between the inverted cohort size and RMS distance from the
target words (r 5 20.78, r2 5 0.60, P , 0.01). This con!rms the !ndings of
the earlier analyses, showing that before the uniqueness point of a word, its
semantic activation depends strongly on the number of candidates that
match the input so far. When the candidate set size is small, the network can
construct an output vector which is fairly similar to all possible candidates’
representations. As the set size increases, this becomes more dif!cult and the
distance from the candidates also increases (in localist terms, their
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activations decrease). This aspect of the model diverges from the Cohort and
NAM models, in which a word’s competitor environment cannot directly
affect its activation. Instead, the behaviour is closer to that predicted by
interactive models such as TRACE (McClelland & Elman, 1986) and
Shortlist (Norris, 1994), which employ lateral inhibition between word
candidates to reduce activations.

A closer examination of the data for phoneme 2 in Fig. 8 suggests that
although the overall negative correlation between the inverse of cohort size
and semantic distance is strong, it may be restricted to the smaller word
cohorts (i.e. the points towards the right-hand side of the graph). This is a
consequence of the limit on parallel activation of multiple distributed
patterns discussed earlier (see also Gaskell, 1996). The ability of a network
to activate multiple distributed patterns in parallel is severely disrupted for
large numbers of patterns. Thus, for the larger cohort sets, it is unclear
whether we can really say that the network is entertaining all the hypotheses
in parallel.

On presentation of the third phoneme, most text words became uniquely
identi!able and the network could isolate their full lexical representation.
Excluding the data for the two non-unique items, there was no signi!cant
correlation on presentation of the !nal phoneme (r 5 20.31, r2 5 0.10, P .
0.1). This illustrates a further difference between our model and other
models of competition. In a system of interactive activation such as TRACE,
word activations build up gradually, since the activation of a word at any
particular point in time depends on a function of both its current input and its
activation at the previous time-step. This creates continuity and implies that
the effects of competition will remain evident for some time, even after there
is suf!cient input to resolve any ambiguity. TRACE therefore predicts that
activation will re"ect the cohort competitor environment even after the
uniqueness point has been reached.

The competitor effects observed here are more transient, and are
eliminated as soon as there is suf!cient bottom-up evidence to uniquely
specify a word. This is because the network does not rely so much on residual
activations in the calculation of its output. In effect, each time-step offers the
opportunity for a complete reassessment of the words underlying the current
input. This makes the lexical matching process more ef!cient, since
competitors only affect word activations before the uniqueness point is
reached.

The analysis of the lexical distances on presentation of the !rst segment
showed an unexpected signi!cant correlation in the opposite direction to the
effect observed on the second segment (r 5 0.79, r2 5 0.62, P , 0.01). The
!rst phoneme was the same for each word (/g/) and so the same number of
words (n 5 161) matched the speech input so far. Our expectation was that
the network would construct a semantic vector which was (as far as possible)
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equally close to all matching words. In fact, the output of the network was
slightly closer to words with large cohort sets than to those with smaller
cohort sets, reversing the normal effect of competition. Since this
observation is based on the repeated presentation of a single phoneme, it
should be interpreted with caution, but such a result does seem plausible
when the interaction between the phonological  and semantic tasks is
considered.

Because all the words in the training set are presented with equal
frequency, the network cannot make any useful prediction about the
identity of a word on the basis of the initial /g/. At the same point in time,
however, the phonological  layer must re"ect the relative probabilities  of the
available options. Although each word is equally frequent during training,
different segments will occur in words starting with /g/ with different
frequencies. Therefore, the state of the phonological level of output will
re"ect these frequencies, activating more frequent segments to a slightly
greater extent than less frequent segments (as well as activating the
word-initial /g/ node strongly). To some extent, these frequencies  will
correlate with the cohort competitor set size (for example, the greater cohort
set size for /gr/ than /gl/ words implies that /r/ will occur more frequently than
/l/ in the context of a word-initial /g/). There is an overriding tendency for the
network to produce consistent semantic and phonological outputs. This
interaction between the two sections of the output vector implies that the
semantic layer will be biased towards an output coherent with the
phonological output, meaning that the semantic vector should be slightly
pushed towards the representations of words which contain the more
frequent segments, namely those in the larger cohort sets. The upshot of this
interaction is that there are very small, transient advantages for words in
large cohort sets, similar to “gang effects” found in visual tasks (Andrews,
1989, 1992). However, these effects are quickly swamped by a much stronger
bias in the opposite direction.

In summary, the main !nding of these simulations is that our model
predicts strong effects of competitor set size when the speech signal is
ambiguous, but little or no effect once this ambiguity is resolved. The
experimental data relating to this prediction are dif!cult to evaluate. Some
evidence for effects of competitor set size comes from cross-modal priming
studies of word recognition. Zwitserlood (1989) used prime words
embedded in sentential context to examine the time course of word
recognition. Subjects were presented with spoken sentences, and a visual
target related to the prime word was used to probe activation levels at
varying points during the presentation of the prime. Zwitserlood was
primarily interested in the interaction of context during word recognition,
but if we examine just the conditions where the context was neutral, we !nd
that probes in early positions (where the speech is still ambiguous) elicit
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20–30 msec of priming, compared with 40–50 msec effects at the recognition
point (where the speech is now unambiguous). Similarly, Marslen-Wilson
(1990) used cross-modal repetition priming to examine the activation of
monosyllabic words. The prime words were either presented whole or with
the !nal consonant cut off, and all primes had at least one cohort competitor
with the same onset and nucleus. For the fragmented words, where more
than one word candidate remained active, the priming of the visual target
was modest (between 4 and 43 msec depending on frequency and
competitor environment). The complete primes, however, evoked over
100 msec of priming in all conditions.

These results can be taken as evidence for an inverse relationship between
the number of matching words and their activation. Early in a prime word
there are multiple potential matches, and the priming of a target related to
one of those is weak, compared to the amount of priming obtained by the full
prime word. However, there are a number of reasons why we should be
cautious about drawing such a conclusion. First, these studies use associative
priming to assess lexical activations, which may re"ect co-occurrence
relationships between words rather than the activiation of their meanings
(Moss, Hare, Day, & Tyler, 1994; Plaut, 1995). These studies also confound
processing time (i.e. the time available to process the prime before the
presentation of the target) with the availability of stimulus information.
Zwitserlood and Schriefers (1995) have shown that both factors can
in"uence the degree to which cross-modal priming occurs. Furthermore, a
study by Marslen-Wilson and Gaskell (1992), which used a similar
methodology to Marslen-Wilson (1990) to examine the time course of
recognition of multisyllabic words, found no difference between the priming
levels of complete bisyllabic words and the same words fragmented before
their uniqueness point (the !nal consonant).

Frequency and Competition Effects

The simulation described above employed a training set in which all words
were presented with the same frequency. This is unrealistic, since there are
large variations in the frequency of usage of words. It is well established that
connectionist networks are sensitive to this frequency information (e.g.
Kawamoto, 1993; Plaut et al., 1996; Seidenberg & McClelland, 1989).
Learning in connectionist networks generally involves small adjustments of
weights to reduce the difference between the network’s output for any
particular pattern and the desired output (the training output). Thus, the
state of the network’s weights depends predominantly on the patterns it is
exposed to most often.

In terms of the current model, this means that the output of the network
during word recognition re"ects the lexical representations of the word
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candidates still matching the speech input, but that this output is biased in
favour of the higher-frequency word candidates. Again, this is a
consequence of the training regime, in which the model must produce the
maximum lexical information at all points during the presentation of a word.
For example, if during word recognition two candidates remain active, one
of which has been presented to the network 1000 times during training and
the other only 500 times, the network’s output should be closer to the lexical
representation of the high-frequenc y word (i.e. its activation should be
greater), since this is the more likely of the two candidates.

This behaviour was demonstrated using a simple variant of the competitor
environment simulation in which half the words were presented during
training 20 times per epoch and half 40 times. This gives a training frequency
range which should produce a bias towards the more frequently presented
training words during testing. Figure 9 shows the time course of semantic
activation of selected words from the training corpus. The words form
cohort competitor pairs, such as glum and glove, which diverge phonemically
from each other on their !nal segment and from the rest of the training
words on the penultimate segment (i.e. there are no other words in the
training set beginning /glö/). One of each pair was a member of the
high-frequency training group, and the other was a low-frequency word.

At word position 21 (the penultimate segment), only the two test words
are consistent with the input so far. At this point, the network occupies a
position in between these words in lexical space, but closer to the
high-frequency word. The distance from the high-frequen cy word (0.26) is
roughly half the distance from the low-frequency word (0.48), re"ecting the
2:1 ratio of presentation frequency during training. When the ambiguity is
resolved (position 0), the network moves towards the matching candidate
and away from the mismatching one, although in this case a weaker
frequency effect remains, suggesting that the high-frequency representation
has been better learnt.

Although the frequency effects before and at the uniqueness point are
both caused by the same overriding principle of error reduction, there are
important differences between them. The frequency effect at the uniqueness
point (position 0) simply re"ects how well the patterns have been learnt and
is heavily dependent on absolute frequency as well as implementational
parameters, such as the number of hidden units and the learning rate and
algorithm. It follows that given suf!cient resources and training time, the
effect could diminish or disappear altogether as the performance of the
network reaches a ceiling level. On the other hand, the frequency effect
before the uniqueness point (position 21) has a quite different cause and is
more robust. In cases of ambiguity, the network weights the available
options according to their relative likelihood, based on frequency of
presentation during training. No amount of training can eliminate this
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FIG. 9. The time course of activation of frequency variant word pairs (e.g. glum and glove)
which diverge on their !nal segment. The squares plot the mean distance between the semantic
output of the network and the low-frequency members of the pairs, and the circles plot the same
measure for the high-frequency members. In each case, the solid line marks the activation
pattern when the input matches the target and the dashed line marks the activation pattern
when the input and target mismatch (e.g. the distance from glove when glum is presented).

temporary ambiguity and so, even when the network is performing perfectly,
transient probabilistic  frequency effects remain. These effects during the
process of word recognition are similar to those predicted by the revised
Cohort model (Marslen-Wilson, 1987) and are supported by data from
cross-modal experiments (Marslen-Wilson, 1987, 1990) showing differences
in the amount of priming engendered by high- and low-frequency words
before their uniqueness points.

DISCUSSION

We are now in a position to summarise the properties of the model we
propose and evaluate it with respect to other models of spoken word
recognition. We shall also extend our discussion to cover related topics that
have not been explicitly simulated so far.
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The Processing Environment for Lexical Access

There is now a large body of evidence indicating that lexical access is highly
sensitive to the phonetic details of speech (e.g. Andruski, Blumstein, &
Burton, 1994; Connine, Blasko, & Titone, 1993; Marslen-Wilson et al., 1996;
Warren & Marslen-Wilson, 1987, 1988). Although the perceptual system is
highly successful at !ltering out many types of noise and variation, phonetic
and subphonetic deviations have a potent effect on the success with which
access to lexical entries occurs. This is unsurprising, given the nature of the
task that the perceptual system faces. A recognition system that has trouble
distinguishing sat from sap, sack or sad will be inadequate for the task of
understanding everyday speech. Even for words that have less crowded
phonological neighbourhoods, the ability to distinguish new words from
familiar ones is important. Indeed, lexical neighbourhood density seems to
have little effect on the goodness of !t needed, since deviations at the ends of
long words with no close cohort competitors (e.g. apricod for apricot ) are
just as disruptive to the lexical access process as shorter words with more
competitors (Marslen-Wilson & Gaskell, 1992).

This seems an unlikely property to emerge from a connectionist
simulation of such a process. Connectionist learning networks can be
thought of as operating on a “need to know” basis. In a categorisation task,
for example, they tend to encode the minimum information necessary to
distinguish each stimulus from its neighbours.

However, our simulations of Marslen-Wilson and Warren’s (1994) data
show that our model, like humans, does not develop such tolerance. Tokens
such as smob, for example, which match the closest word (smog) on
everything but the place of articulation of the !nal segment (and in the case
of the W2N1 stimuli, even contain vowel transition cues compatible with
that place), do not strongly activate the lexical representation of that word.
Why does the network require so much phonetic detail to access the
meaning of the nearest word?

We suspect there are a number of reasons for this behaviour. First, there is
the fact that the network is trained on a large number of different
monosyllabic forms, which forces the network to retain a reasonably
complete representation of phonological forms to distinguish them from
each other. A second point is that the network is forced to pay attention to
the full phonological  representation of each word by the nature of the task.
The network needs to encode the phonological  representation of each word
because it must output this information alongside the stored semantic
knowledge. This prevents the network from developing poorly speci!ed
representations of word form. A !nal reason for the model’s intolerance of
deviation lies in the method of presentation of the input. Each word is
embedded in a continuous stream of speech with no explicit cues to the
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beginnings and ends of the words. This means that the network does not
have the luxury of knowing that the /b/ in smob is part of that token. Instead,
it could be the onset of a new word, meaning that a large new set of lexical
representations must be considered, all of which will bias the output of the
network away from the representation of smog.

The differences between the distributed model and TRACE have already
been examined in some detail. TRACE employs a system of interaction
between nodes which allows inhibition only between nodes in the same
representational level and facilitation only between nodes in different levels.
Our model is more similar to Shortlist (Norris, 1994), in that it makes less use
of lateral inhibition and more of bottom-up inhibition. This similarity is not
surprising, given that the initial stage of Norris’s model (a lexical dictionary
search) is intended to represent the behaviour of the recurrent networks
examined in his earlier research (Norris, 1990, 1991).

Distributed Representations

The use of a single distributed level of representation is a crucial feature of
our current model. We have shown that competition between word nodes in
a localist model can be re-described as interference between multiple
distributed representations. The differences between the two accounts of
competition can be subtle, and it is not easy to distinguish between them
experimentally, even though the difference between the two represen-
tational systems is taken to be fundamental. Nonetheless , functional
differences do exist and require experimental evaluation.

In the distributed model, direct competition is obligatory—the distance
between a lexical blend and one of its component words depends strongly on
the number of active words and their relative frequency. In effect, the model
implements a form of the Universal Frequency Franchise argued for by Bard
and Shillcock (1993), in which competitors are effective in proportion to
their frequency. Localist models can also implement such a system, but this is
an optional property. For example, TRACE uses inhibitory links between
word nodes to effect a direct competition. On the other hand, Cohort—
both in its original form (Marslen-Wilson & Welsh, 1978) and a more
recent version (Marslen-Wilson, 1993)— and the NAM model (Luce
et al., 1990) assume that word candidates do not directly affect each other’s
activations, although this factor can be taken into account at a decision
level.

A second distinction between localist and distributed approaches  is that
the distributed blending model is inherently noisy. There is a limit on the
number of representations that can be informatively activated in parallel.
Beyond this limit, the system does not break down entirely, but it does
become dif!cult to separate active from inactive words simply on the basis of



648 GASKELL AND MARSLEN-WILSON

lexical distance. This limit depends on a number of factors, including the
dimensionality of the representational space and the number of words in the
lexicon, as well as the distribution of word representations within this space.

Marslen-Wilson (1987) describes the Cohort model in terms of three
functions: access, selection and integration. Access refers to the initial
mapping onto lexical representations, which in the Cohort model involves
the access to multiple semantic information as well as phonological
information. Selection describes the process of eliminating mismatching
candidates and integration describes the mapping of the semantic and
syntactic information about the recognised word onto the high-level
utterance representation. The Cohort model proposed that multiple
candidates were accessed and assessed in parallel. This was in direct contrast
to serial search models, for which selection took place prior to access
(Forster, 1976).

The distributed model re!nes and develops the stance taken by the
Cohort model. The parallel assessment of multiple candidates is retained,
but access to the lexical representations of these words becomes intimately
tied in with the process of selection. As we have shown, the degree to which
lexical knowledge about a word is accessed depends on the number of
candidates remaining, with only partial and degraded information available
for multiple candidates. It is only once selection is complete that the
meaning of the remaining word can be fully isolated.

Autonomy and Interaction in Lexical Access

For “box and arrow” models of perceptual processes, the direction of "ow of
information between the different boxes (levels of representation) is a
critical issue. In the area of spoken word recognition, a wide range of views
has been taken, ranging from a strict bottom-up "ow of information (e.g.
Forster, 1976; Norris, 1994) to fully interactive processing (McClelland &
Elman, 1986).

Applied to connectionist learning models, the focus of this debate shifts
slightly, since feedforward networks (once trained) operate in a strictly
bottom-up manner, but show interaction between the various mappings they
are required to perform (Norris, 1993). It still remains important, however,
to ask what types of information interact, and under what circumstances (cf.
Tabossi, 1993).

Our simulation of the data of Marslen-Wilson and Warren (1994)
demonstrates strong effects of lexical status on the perception of word
forms, which can be taken as evidence for interaction between lexical and
phonological sources. However, our simulations so far have not addressed a
more controversial form of interaction—effects of preceding sentential
context on the recognition of words. In its current form, the model would no
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doubt show little effect of sentence context on lexical activations because the
dependencies and abstractions that must be learned for such behaviour to be
observed far exceed the capacity of a simple recurrent network. However,
we will assume that the capacity of the human perceptual system also
exceeds that of a simple recurrent network, in which case we would expect
contextual factors to create expectancies that affect the time course of lexical
access.

A simple example of these expectancy effects comes from connectionist
models of associative priming (Moss et al., 1994; Plaut, 1995). These models
show sensitivity to word pairs that frequently co-occur in their training data
(such as cat and dog), allowing one member of the pair to facilitate
recognition of the other when tested. Word co-occurrence is a particularly
obvious source of information, but more complex dependencies may also be
learned and exploited in much the same way.

Even so, the effects of contextual factors on the word recognition process
are unlikely to be strong. First, the information that can be gleaned from
analysis of a word’s preceding context is usually probabilistic, as opposed to
the deterministic information available from analysis of the acoustic form of
the word itself. Context will rarely provide !rm enough evidence to rule out
an incongruent candidate or accept a congruent one. All it can do is modify
the output of the network moving it towards favourable candidates and away
from unfavourable  ones.

A second point to make is that there is a rather narrow time-window in
which effects of context should be observable, as a consequence of the
distributed blending approach to competition that we are proposing.
Contextual effects can be likened to the transient frequency effect found in
our current model. When the speech is ambiguous between two word
candidates, such as glum and glove, there is a greater chance of the
ambiguous token turning out to be the high-frequency word, and the
network re"ects these relative probabilities by moving the output vector
closer to the representation of the high-frequency word (see Fig. 9).
However, this effect is largely limited to the point in time at which the input
could be one of these words, but no other. Earlier on in the processing of the
word, the relative probabilities  remain the same, but each word’s overall
probability is much smaller due to the presence of other matching word
candidates. Thus, in terms of distance, the advantage enjoyed by the
high-frequency word is much smaller.

A similar pattern of activity would be expected for contextually
appropriate and inappropriate words—little advantage early on in the
processing of a word, but stronger effects when few matching words remain.
There is a slight difference between the effects of relative frequency and
contextual appropriateness, since contextual appropriateness is a measure
that can be applied to all words in a cohort, and may provide a consistent bias
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in certain dimensions of lexical space. Nonetheless, this effect would still
increase as the number of matching candidates diminishes.

This interpretation of context effects offers an alternative account of the
effects of contextual appropriateness on the time course of spoken word
recognition found by Zwitserlood (1989). She examined the effects of
different types of preceding sentential context on the ability of a fragmented
auditory prime word to facilitate recognition of a related visual target. She
found that contextual appropriateness effects only emerged late in the word,
but still before the sensory information was suf!cient to entirely
disambiguate the prime word.

Zwitserlood argued that this pattern of results was obtained because the
appropriateness of the preceding context could only affect the selection
stage of the recognition process and not the access stage (although
Marslen-Wilson, 1989, argues that the same data imply that context affects
only the integration stage). The distributed model makes similar predictions
in terms of priming effects, but does so on the basis of the pattern of blending
of distributed patterns that occurs during the processing of a word. Early on
in the word, there can be little advantage of one word representation over a
competitor, because there are too many other word representations that
need to be represented by the single blend. Only later, when there is a small
number of candidates, does the opportunity emerge for context to
signi!cantly affect the activations of the remaining candidates.

The Role of Phonological Representation in
Speech Perception

The incorporation of phonology alongside other forms of knowledge in a
single distributed lexical space marks a departure from the standard model
of lexical access in speech perception. Other models have assumed that
phonology is either represented pre-lexically (e.g. McClelland & Elman,
1986), or both pre- and post-lexically (Cutler & Norris, 1979; Foss, Harwood,
& Blank, 1980).

The model shares much in functional terms with these other models, since
it shows lexical effects on the perception of phonological  form and provides
a basis for the perception of nonwords and words alike. However, it satis!es
these constraints without integrating phonological  knowledge pre-
lexically. The model preserves relevant detail in the mapping process onto
lexical representations, while still providing a compact and relatively
abstract representation of the phonological  form of both words and
nonwords.

It is worth considering the possibility that although the network is not
trained explicitly to develop pre-lexical phoneme-like units, it nevertheless
develops distributed segmental representations to carry out its task.
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Abstraction is common in connectionist simulations of linguistic tasks (e.g.
Elman, 1990, 1993), and may also be occurring in our network, but subject to
the constraint that relevant phonetic detail is not lost as a result. Indeed, such
weak abstraction is functionally equivalent to the direct access from features
approach.

Competition Across Word Boundaries and
Segmentation

Our discussion of competition effects so far has concentrated on the
activation of onset-aligned  words (e.g. glum and glove). However,
McQueen, Norris and Cutler (1994) have demonstrated effects of
competition between both onset-aligned  and non-aligned words using a
word-spotting task. Such effects are not necessarily problematic for our
model provided the competing words remain the “focus” of the network
output. In other words, the network should resolve ambiguity correctly—
regardless of the alignment of the competing words—provided the critical
discriminating input arises by the offset of the target word. However, when
competition cannot be resolved by this time, the model will fail because it
has only been trained to input information about the word containing the
current speech input. The model lacks the ability to “look back” at previous
ambiguities to resolve the con"icts on the basis of new evidence.

The lexical networks of TRACE and Shortlist offer one solution to this
problem. However, it would be preferable, if possible, to develop a complete
model of speech perception within the distributed learning approach. One
way to encourage our current model to show these effects is simply to train
the network to delay its output. By shifting the input one segment to the left,
so that the task of the network is to extract the lexical and phonological
information about the word that the previous segment belongs to, a greater
proportion of ambiguities  can be resolved. For example, the word glue
cannot be fully identi!ed by the current model because of the presence of the
embedding word gloom. However, the same architecture trained with a lag
of one segment allows this ambiguity to be resolved in the case of phrases
such as glue snif!ng, where the segment following glue (/s/) mismatches the
embedding word.

Unfortunately, forcing a !xed delay on the network eliminates some of its
attractive properties, particularly the ability to respond to incoming speech
swiftly, as humans seem to do (Marslen-Wilson, 1973). Also, it is dif!cult to
decide how long such a lag should be, since some ambiguities may continue
several segments into the following word (and it is also unclear at what point
the human perceptual system breaks down given such ambiguities). What is
required is a more "exible output mechanism, which delays output only
where necessary.
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7In fact, the model had only one output window, but the network was trained to output the
identity of either the current word or the previous word, depending on the activation of an input
node.

Content and Sternon (1994) modelled such effects using a simple
recurrent network architecture by adding a second output window which
was trained to output the identity of the previous word.7 This allowed
following context to affect the identi!cation of a previous word, even for
novel combinations of words. This approach, although still somewhat
restrictive, appears a promising avenue of inquiry. It is important to
recognise that the goal of our current model—access to word knowledge— is
not the ultimate goal of the speech perception system. The problems of
embedding may be more tractable for a distributed learning model when the
target of the mapping is the meaning of the utterance, or at least the phrase,
rather than the meaning of a single word.

A related issue is the segmentation of the speech continuum into word
units. Models of segmentation have generally either emphasised the use of
cues contained in the speech signal, so as to segment speech pre-lexically
(e.g. Cutler & Norris, 1988), or advocated a process of lexical competition
that operates in parallel with word recognition (McClelland & Elman, 1986;
Norris, 1994). Experimental evidence for both these approaches is available
(e.g. Cutler & Carter, 1987; Cutler & Norris, 1988; McQueen et al., 1994)
and it is likely that the human system makes use of both types of process to
segment speech ef!ciently. The statistical learning approach employed in
our network is in a strong position to make use of all available cues to
segment speech as the process of lexical access unfolds. We have shown that
our network exhibits competition between lexical candidates, both within
and across word boundaries. Simple recurrent network models have also
displayed the capacity to pick up low-level cues to likely word boundaries,
based on the statistical properties of the language (Cairns, Shillcock, Chater,
& Levy, 1995; Gaskell, 1994). These cues can be employed "exibly and
probabilistically by the network, allowing it to adapt its segmentation
strategy according to the strength of information available.

Predictions

The most prominent predictions of our model stem from its treatment of
competition during lexical access. The distributed model predicts that the
frequency and number of word candidates matching the speech input at any
point directly affect their activations (as measured by distance in lexical
space). This makes the model falsi!able, but unfortunately, a positive result
would not rule out all localist models, since those that employ lateral
inhibition (e.g. TRACE) make similar predictions. Evidence that multiple
semantic representations can be activated without interference would be
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dif!cult to accommodate not only by our model, but also by models that
treat semantic representations as fully distributed patterns of activation. We
have begun to examine this prediction, looking at the effects of competitor
environment on lexical activation using spoken word fragments in a priming
task. The experiments show strong effects of the number of words matching
the prime fragments, as predicted by our model (Gaskell & Marslen-Wilson,
1997).

The distributed model also predicts that the content of lexical
representations should affect competition during lexical access. Gaskell
(1996) has shown that sparseness affects the blending of distributed
representations, and thus we might expect lexical variables such as
imageability  to interact with the competition between word candidates
during lexical access. Preliminary data on this topic suggest that imageability
does affect response times in naming and lexical decision tasks, particularly
for spoken words in dense cohort neighbourhoods (Tyler, Voice, & Moss,
1996).

Finally, there is a possibility of determining the limit on the number of
distributed representations that can be activated in parallel. This seems a
more dif!cult question to test, because it relies on being able to tell the
difference between very small amounts of activation and no activation at all
(e.g. by using priming techniques). On the other hand, this would be a
particularly interesting question to address, because it might give us clues
about the dimensionality or richness of lexical representations (and of
mental representations in general).
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