
Natural Language Recursion and Recurrent Neural NetworksMorten H. Christiansen Nick ChaterPhilosophy-Neuroscience-Psychology Program Neural Networks Research GroupDepartment of Philosophy Department of PsychologyWashington University in St. Louis University of EdinburghCampus Box 1073 7 George SquareOne Brookings Drive Edinburgh EH8 9JZSt. Louis, MO 63130 Scotland, U.K.morten@twinearth.wustl.edu nicholas@cogsci.ed.ac.ukAbstractThe recursive structure of natural language was one of the principal, and most telling, sourcesof di�culty for associationist models of linguistic behaviour. It has, more recently, become a focusin the debate surrounding the generality of neural network models of language, which many wouldregard as the natural heirs of the associationist legacy. Can neural networks learn to handle recursivestructures? If not, many would argue, neural networks can be ruled out a priori as viable modelsof language processing. In this paper, we shall reconsider the implications of natural languagerecursion for neural network models, and present a range of simulations in which recurrent neuralnetworks are trained on very simple recursive structures. We suggest implications for theories ofhuman language processing.1 IntroductionFrom its inception, cognitive science has paradigmatically eschewed �nite state models of naturallanguage processing. The existence of complex recursive language structures|involving, most im-portantly, center-embeddings or cross-dependencies|appears to militate against �nite state accountsof linguistic behaviour. Such sentence constructions are di�cult to process because it is necessaryto keep track of arbitrarily many di�erent dependencies at once. For example, processing arbitrar-ily deep center-embedded constructions requires (at least) an unbounded (\last-in-�rst-out") stack;and processing an arbitrary number of cross-dependencies requires (at least) an unbounded (\�rst-in-�rst-out") queue. This is not possible for associationist accounts, which assume that the languageprocessor is a (particular kind of) �nite state machine (FSM). Similarly, assuming, as we must, thatall parameters have �nite precision, any �nite neural network is also a �nite state machine. Hence,it seems prima facie that neural network models of language processing also cannot account for theexistence of recursive natural language constructions.In this paper, we re-examine the problem of accounting for natural language recursion in neuralnetworks qua �nite state models of language processing. First, we discuss center-embedded and cross-dependency recursion as it occurs in natural language, arguing that while neural network modelsdo not need to capture arbitrarily complex recursive structure, they must be able to handle recursiveregularities of a limited depth. In section 3, we present a series of simulations involving recurrent neural



(a)(the) boys (the) woman (the) cat chases sees walk (b)A b c x y Z(c)(de) mannen (hebben) Hans Jeanine (de paarden) helpen leren voeren (d)A b c X y zFigure 1: Illustration of a center-embedded sentence in English (a), a Dutch sentence with cross-dependencies (c), andthe abstract structure of their respective dependency relations ((b) and (d)).networks trained on center-embedded and cross-dependency structures. Finally, we compare networkperformance with experimentally observed limitations on human processing of similar structures, andsuggest implications for theories of human language processing.2 Recursion in Natural LanguageCenter-embedding and cross-dependency recursion have played the leading roles in the dismissal of�nite state models of language (e.g., in Chomsky, 1957). Examples of such constructions are shown inFigure 1(a) and (c). Center-embedding occurs in a large number of languages, including English; cross-dependencies are much less common, although clear examples occur in Swiss German and, as here, inDutch. As is clear from 1(a), even a sentence with two center-embeddings is very di�cult to process.1(a) can be loosely glossed \the boys, seen by the woman who is chased by the cat, walk". The literalEnglish translation of 1(c) is `the men (have) Hans Jeanine (the horses) help teach feed' and can beglossed as `the men helped Hans teach Jeanine to feed the horses'. The syntactic manifestation of thedependency of interest in these examples is the singular/plural agreement between the subject-nounsand their corresponding verbs. Figure 1(b) and (d) show the abstract structure of this agreement, withthe convention that upper case letters denote \plural" items, and lower case letters denote \singular"items.One line of defense against the demise of �nite state models of language processing is that arbitrarilylong center-embedded constructions, while allowed by the rules of generative grammar, do not occurin practice (Christiansen, 1992). Indeed, empirical studies (e.g., Bach, Brown & Marslen-Wilson,1986) have shown that sentences with either three or more center-embeddings or three or more cross-dependencies are universally hard to process and understand. Perhaps, then, FSMs, including neuralnetworks, might be able to model language processing successfully. A second line of defense is that allreal computational devices, including the digital computers on which successful symbolic parsers forrecursive structures are routinely constructed are, at bottom, �nite state devices. Moreover, the brainitself has a �nite number of states (again assuming that we do not advert to arbitrary precision), sothe limitation which applies to neural networks must in any case apply to any cognitive model.2



There is, however, a more sophisticated form of the original argument, based on the observationthat what is important about generative grammar is not that it allows arbitrarily long and complexstrings, but that it gives a simple set of rules which capture regularities in natural language. Anadequate model of language processing must somehow embody such grammatical knowledge. It must,for example, be able to handle novel sentences which conform to the linguistic regularities, and beable to reject as ungrammatical novel strings which do not. In traditional computational linguistics,this is done by representing grammatical information and processing operations in terms of symbolicrules. While these rules could, in principle, be applied to sentences of arbitrary length and complexity,in practice they are necessarily bounded by the �niteness of the underlying hardware. Unless neuralnetworks can perform the same trick of capturing the underlying recursive structures in language, thenthey cannot be complete models of natural language processing.Importantly, this more sophisticated argument removes the debate concerning neural networks andnatural language recursion from the domain of a priori speculation. It poses a speci�c challenge: toshow that neural networks can capture the recursive regularities of natural language, while grantingthat arbitrarily complex sentences cannot be handled. We shall make a step towards addressing thischallenge in the simulations below.3 The Processing of Recursion in Recurrent NetworksThe issue of recursion has been addressed before within a connectionist framework. For example, bothElman (1991) and Cleeremans, Servan-Schreiber & McClelland (1991) have demonstrated the abilityof Simple Recurrent Networks (SRN) to deal with right recursive structures (which can, however, behandled by an FSM) as well as limited instances of center-embedded recursion. In addition, the latterform of recursion has been studied further by Weckerly & Elman (1992). SRN studies deliberatelysidestep the goal of teaching the network to develop explicit representations of linguistic structure.Instead the network is trained to predict the next item in the sequence, and must learn the grammaticalstructure to do this. It is fair to say that these models have so far reached only a modest level ofperformance. Only little headway has been made towards more complex grammars involving center-embedded recursion (most noticeably by Elman, 1991 and Weckerly & Elman, 1992), but not towardscross-dependency recursion. The simulations reported in this paper build on and extend this work,by focussing directly on center-embedded and cross-dependency constructions, in the form that theywere originally outlined by Chomsky (1957).13.1 MethodRecurrent networks are usually trained by \unfolding" them into feedforward networks with the samebehaviour. The hidden units from the previous time-step are then treated as an additional set of inputs,allowing the resulting feedforward network to be trained using standard back-propagation. There area various ways in which this unfolding can be achieved (see Chater & Conkey, 1992). One approach is1In Christiansen & Chater (in prep), we also consider another simpler, recursive construction (which we call \countingrecursion") introduced by Chomsky (1957) as falling outside the scope of �nite state models.3



to unfold the network through several time steps (Rumelhart, Hinton & Williams, 1986) so that eachweight has several \virtual incarnations" and then back-propagate error through the resulting network.The overall weight change is simply the sum of the changes recommended for each incarnation. This\back-propagation through time"|or, Recurrent Back-Propagation (RBP)|is typically implementedby unfolding through a small number of time steps (7 for the current simulations). The copy-backscheme employed in SRNs can be viewed as a special case of RBP, in which the back-propagation oferror stops at the �rst copy of the hidden units|the context units. Simulations by Chater & Conkey(1992) have shown that RBP performs better than SRNs on a number of tasks (such as, learning to bea delay line and performing discrete XOR), although the former is considerably more computationallyexpensive. A secondary motivation for the present simulations is therefore to compare the two trainingregimes on more language-like tasks2.As a benchmark on which to assess the performance of the two networks, we also developed asimple statistical prediction method, based on n-grams, strings of n consecutive words. The programis \trained" on the same stimuli used by the networks, and simply records the frequency of each n-gramin a look-up table. It makes predictions for new material by considering the relative frequencies ofthe n-grams which are consistent with the previous n� 1 words. The prediction is a vector of relativefrequencies for each possible successor item, scaled to sum to 1, so that they can be interpreted asprobabilities, and are therefore directly comparable with the output vectors produced by the networks.Below, we report the predictions of bigram, trigram and quadrogram models and compare them withthe network models.To construct the stimuli on which to test the networks, we used the structures shown in Figure 1(b)and (d). That is, the �rst half of a string consists of \noun" type words (A, a, : : :); the second halfof the string consists of \verb" type words (: : :z, Z). Each word has singular and plural forms, lowercase being used for singular items and upper case for plural. Furthermore, each sentence has an endof sentence marker, a \." , after the �nal \verb". Thus, the set of center-embeddings strings include:AZ., aazz., aAZz., AazZ., AaazzZ., aaAZzz., : : : ; cross-dependency strings include AZ., aazz., aAzZ.,AaZz., AaaZzz., aaAzzZ., : : : . For both experiments training sets of 2000 sentences and test sets of1000 sentences were generated in a probabilistic fashion (each with a mean sentence length of about4.7 and sd about �1.3)3. The next two subsections report the results obtained in two experimentsusing these two languages involving, respectively, a two word and an eight word vocabulary4.2In any interesting language-like task, the next item will not be deterministically speci�ed by the previous items,and hence it is appropriate for the prediction to take the form of a probability distribution of possible next items.Consequently, network performance in the simulations reported below was measured against this probability distributiondirectly, rather than against predictions of the speci�c next item in the sequence. Following Elman (1991; and others)the mean cosine between network output vectors and probability vectors given previous context is used as a quantitativemeasure of performance.3For each sentence the depth of nesting was computed by iterating the following: if r < pn(1� p) then an extra levelof nesting would be added to the sentence, where r is a random number between 0 and 1; p the probability of adding alevel of nesting (0.3 in the simulations reported here); and n the number of nestings that the sentence already has.4Initial explorations indicated that the best performance for the SRNs was to be obtained with a learning rate of 0.5,a momentum of 0.25 and an initial randomization of the weights between �0:5. In the case of RBP, no momentum wasused, the learning rate was set to 0.5 and the weights initialized randomly between �1:0.4
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quadrogram(a) (b)Figure 2: Network and n-gram performance on (a) center-embedded recursion and (b) cross-dependency recursionplotted as a function of embedding depth (2 word vocabulary).3.2 Experiment 1: Two Word VocabularyThe �rst experiment involves the two word vocabulary as found in Chomsky (1957) (with the addi-tional singular/plural agreement constraint as described in section 3.1). Thus, we have a vocabularyconsisting of a \noun" in a singular and plural form, `a' and `A' respectively, and a \verb" likewisein a singular and plural form, `z' and `Z' respectively. Both networks were trained with 5, 10 and 25hidden units on each of the two tasks, but only the results of the network con�gurations with the bestperformance is reported here5. The inputs and outputs were represented as binary localist vectorswith one bit for each word form and one for the end of sentence marker (totalling 5 inputs/outputs)6.Center-embedded recursion: In the �rst task, the best RBP network (with 5 hidden units) per-formed slightly better on this task than the best SRN (with 25 hidden units)7. This is also mirrored inthe relative increase in performance through learning with an 47% improvement of performance for theRBP net (from cos0:538 before training to cos0:792) compared with a 34% improvement for the SRN(from cos0:560 to cos0:755 after training). Turning to Figure 2(a), we can see that the RBP net alsohad a slightly better performance than the SRN across embedding depth. Moreover, the performancedegraded over embedding depth for both networks. Note that the performance of the two nets arecomparable with the performance based on bigram predictions, but inferior to that of both trigrams5The di�erences in performance between the three network con�gurations was small for both nets. For a full report,see Christiansen & Chater (in prep).6Through cross-validation it was found that the number of epochs necessary to reach peak performance in both netsvaried with the size of the hidden unit layer. Increasing the hidden unit layer resulted in faster training (although theRBP nets exhibited much faster training across the board). Subsequently, the SRNs with 5, 10 and 25 hidden units weretrained for 500, 450 and 350 epochs, respectively. The RBP network with 5, 10 and 25 hidden units were trained for275, 250 and 200 epochs, respectively.7The level of performance displayed by both nets was below what Elman (1991) has reported (mean cos0:852), butwell above the performance obtained by Weckerly & Elman (1992) on center-embedded recursive structures.5



and quadrograms.Cross-dependency recursion: In the second task, both networks did equally well on this task andobtained the same relative increase in performance through learning (SRN with 5 hidden units: 29%{ from cos0:571 to cos0:737; RBP with 25 hidden units: 29% { from cos0:570 to cos0:741). Thistrend continues in Figure 2(b), which also illustrates the close relationship in which both network andbigram predictions follow the same degradation pattern across embedding depth (as in the previoustask). Furthermore, the trigram and quadrogram based predictions are again superior to networkpredictions.3.3 Experiment 2: Eight Word VocabularyIn order to test the ability of both networks to capture the recursive regularities necessary for dealingwith novel sentences, we conducted a second experiment involving an eight word vocabulary8. Thus,we have four \nouns" in a singular (`a',`b',`c',`d') and a plural form (`A', `B', `C', `D'), an four \verbs"likewise in a singular (`w', `x', `y', `z') and a plural form (`W', `X', `Y', `Z'). In experiment 1, we foundthat the size of the hidden unit layer did not appear to in
uence performance on either of the tasks.We therefore decided only to train networks with 20 hidden units in the present experiment. Pilotstudies indicated that the localist representation of words that we used in the previous experimentwas inappropriate for the present experiment. We therefore adopted a di�erent representation schemein which each word was represented by a single bit (independently of its form) and the form wasrepresented by one of two bits (common to all words) signifying whether a word was singular or plural.Thus, for each occurrence of a word two bits would be on|one bit signifying the word and one bitindicating its number9. The input/output consisted of 11 bit vectors (one for each of the eight words,one for each of the two word forms, and one for the end of sentence marker). To allow assessment ofnetwork performance on novel sentences, we introduced two extra test sets with, respectively, 10 novelsentences and 10 previously seen sentences (mean: 5.3; sd: �1.6).Center-embedded recursion: On this task the SRN performed modestly better than the RBPnetwork|though the latter had a much better relative performance improvement through learning(RBP: 67% { from cos0:464 to cos0:776; SRN: 35% { from cos0:602 to cos0:813). Figure 3(a) showsthat performance as a function of embedding depth exhibits much the same general pattern of degra-dation as found on the same task in the previous experiment (except from a minor peak on depth 1).Once again, we see that the performance of the nets is comparable with that of bigram predictions,but this time the trigram and quadrogram based performance is less predominant over network per-formance than in the experiment 1. Most importantly, the networks showed no signi�cant di�erence8This extension of the vocabulary was necessary, since leaving out certain sentence structures in the previous experi-ment would have skewed the training set in a problematic fashion. Moreover, we wanted to investigate how the networkswould perform on a bigger vocabulary.9It is worth noticing that this kind of representational format appears more plausible than a strict localist one. Inparticular, it is unlikely that we `store' singular and plural forms of the same word (e.g., \cat" and \cats") as distinctand completely unrelated representations as it would be the case with localist representations. Rather, we would expectthe human language processing mechanism to take advantage of the similarities between the two word forms to facilitateprocessing. 6
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quadrogram(a) (b)Figure 3: Network and n-gram performance on (a) center-embedded recursion and (b) cross-dependency recursionplotted as a function of embedding depth (8 word vocabulary).in performance on, respectively, the novel and the previously seen test sentences (in fact, the RBPnetwork performed slightly better on the novel sentences compared with previously seen sentences,suggesting that the network might have been somewhat undertrained). Thus, the SRN obtained acos0:555 on the novel sentences and a cos0:550 on the sentences it already has been exposed duringtraining10. The RBP network reached a cos0:437 on the novel sentences compared with a cos0:399 onthe previously seen sentences.Cross-dependency recursion: The overall performance of the two nets on the �nal task was muchalike, though favouring the SRN. This is in contrast to the relative increase in performance achievedthrough learning, where the RBP network obtained a 58% improvement (from cos0:476 to cos0:755)compared with the SRN's 28% (from cos0:604 to cos0:773). Figure 3(b) illustrates the close �t betweenthe performance of the two networks across embedding depth. It also shows that the nets are not asclose to the bigram performance as in the previous task (and in the previous experiment). Moreover,net performance is still inferior to trigram and quadrogram based performance. Yet, as it was thethe case in the previous task, both networks were able to deal with novel sentences, indicating thatthey had learned the underlying recursive regularities. The SRN reached an overall performance ofcos0:538 on the novel sentences and cos0:549 on the sentences it had already seen. For the RBPnetwork, cos0:476 was accomplished on the novel test sentences and cos0:463 on the previously seensentences.10Note that this apparently low performance is due to the fact that it was measured against the probability distributionof these two sets, whereas the nets had been trained on (and, thus, become sensitive to) the much more complex probabilitydistribution of the 2000 sentences in the training set. 7
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German/part.Figure 4: The performance of native speakers of German and Dutch on, respectively, center-embedded sentences andsentences involving cross-dependencies is plotted against embedding depth. The �gure is based on data reported in Bach,Brown, & Marslen-Wilson (1986).4 DiscussionIn this paper we posed the following challenge: Can neural networks capture the recursive regularitiesof natural language if we accept that arbitrarily complex sentences cannot (and, perhaps, should not)be handled? The ability of both kinds of networks to generalise to novel sentences involving eithercenter-embedded or cross-dependency recursion in experiment 2 suggests that neural networks mightbe able to do the trick. But where does that leave the pattern of gradual breakdown of performanceas observed in all the simulations presented here? If we compare this breakdown pattern with thedegradation of human performance on center-embedded and cross-dependency structures (as can beadduced from Figure 411), we can conclude that such a breakdown pattern is, indeed, desirable from apsycholinguistic perspective. Thus, network (and bigram based) performance across embedding depthappears to mirror general human limitations on the processing of complex recursive structures.Two other things are worth noticing. First of all, the overall performance (of both nets and n-gram based predictions) on the cross-dependency recursion task was somewhat better than expected.This is a positive result, given that dealing with cross-dependency structures requires the acquisitionof (something closely related to) a context-sensitive grammar, whereas center-embedded recursion`merely' requires the acquisition of a context-free grammar. The networks, then, did better on thecross-dependency task than was to be expected given the structural complexity of the learning task.This is important, since human performance seems to be quite similar on both kind of recursivestructure (see Figure 4). Secondly, there was no signi�cant performance di�erence between the twokind of networks on either of the tasks (in both experiments). This means that the negative resultsreported by Chater & Conkey (1992) regarding SRN performance on certain non-language tasks do11The data from Bach, Brown & Marslen-Wilson (1986: p. 255, table 1: test results) is displayed using f(x) = 9� xto facilitate comparisons with net and n-gram performance expressed in terms of mean cosines.8



not extend themselves to more language-like tasks. Thus, in addressing our secondary motivationfor the present simulations, we found, rather surprisingly, that unfolding a recurrent network for thepurpose of RBP does not seem to provide additional computational power on language-like tasks suchas center-embedded and cross-dependency recursion.The close similarity between the breakdown patterns in human and neural network performance oncomplex recursive structures supports two wide-reaching conjectures. On the one hand, neural networkmodels|in spite of their �nite state nature|must be considered as viable models of natural languageprocessing. At least, we have shown that the existence of center-embedding and cross-dependencyno longer can be used as a priori evidence against neural network (and other �nite state) models oflinguistic behaviour. On the other hand, the common pattern of graceful degradation also suggests thathumans, like neural networks, are sensitive to the statistical structure of language. Neural networkspick up certain simple statistic contingencies in the input they receive (the simulations presentedhere indicate that such statistics might resemble bigram based probability distributions). We suggestthat the breakdown pattern in human performance on complex recursive structures also might be dueto a strong dependence on such statistics in the acquisition of linguistic structure. Whether theseconjectures are true is a matter of future empirical research, not a priori speculation.ReferencesBach, E., Brown, C. & Marslen-Wilson, W. (1986) Crossed and nested dependencies in German andDutch: A psycholinguistic study. Language and Cognitive Processes, 1, 249{262.Chater, N. & Conkey, P. (1992) Finding Linguistic Structure with Recurrent Neural Networks. In Proceed-ings of the Fourteenth Annual Meeting of the Cognitive Science Society, Indiana University, Bloomington,July/August.Chomsky, N. (1957) Syntactic Structures. The Haque: Mouton.Christiansen, M. (1992) The (Non)Necessity of Recursion in Natural Language Processing. In Proceedingsof the Fourteenth Annual Meeting of the Cognitive Science Society, Indiana University, Bloomington,July/August.Christiansen, M. & Chater, N. (in preparation) Finite State Models of Language Learning: A Connec-tionist Perspective. Ms.Elman, J. L. (1991) Distributed Representation, Simple Recurrent Networks, and Grammatical Structure.Machine Learning, 7, 195{225.Rumelhart, D., McClelland, J. & Williams, R. (1986) Learning Representations by back-propagatingerrors. Nature, 323, 533{536.Servan-Schreiber, D., Cleeremans, A. & McClelland, J. L. (1991) Graded state machines: The rep-resentation of temporal contingencies in simple recurrent networks. Machine Learning, 7, 161{193.Weckerly, J. & Elman, J. (1992) A PDP Approach to Processing Center-Embedded Sentences. In Proceed-ings of the Fourteenth Annual Meeting of the Cognitive Science Society, Indiana University, Bloomington,July/August. 9


