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Abstract

Previous work has shown how a back-propagation network with recurrent
connections can successfully model many aspects of human spoken word recogni-
tion {Norris, 1988, 1990, 1992, 1993}, However, such networks are unable to revise
their decisions in the light of subsequent context. TRACE (McCleltand & Elman,
1986), on the other hand, manages to deal appropriately with following context, but
only by using a highly implausible architecture that fails to account for some
imporiani experimertal resulis. A new model is presented which displays the more
desirable properties of each of these models. In contrast to TRACE the new model
is enfirely bottom-up and can readily perform simulations with vocabularies of tens
of thousands of words.

1. Intreduction

in contrast to writien language, speech 18 an inherently temporal signal. In the
case of written language ali of the letters in a word are available for processing
ssimultaneously. In speech, the information in a word must necessarily arrive
sequentially, The location of the boundaries of written words is greatly facilitated
by the presence of white spaces between words, In speech there tend to be few
reliable cues o word boundaries. But, despite the very different nature of the
probiems involved in recognising written and spoken language, most psychojogi-
cal theories of word recognition have tended to adopt the convenient fiction that
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specch is just writfen tanguage with phoniemes instead of letters. However, in the
last fifteen years models have emerged which have begun to pay attention to the

colleagues {Marlsen-Wilson, 1987, Marlsen-Wilkon & Welsh, 1978) have de-
veloped the Cohort model with its emphasis on the “left-to-right” nature of
speech recognition and on how the process of recognition unfolds over time. In
the TRACE model McClelland and Elman {Elman & McClelland, 1986 McClel-
land & Tlman, 1980) have extended this concern with the temporal dynamics of
spoken word recognition. Additionally, TRACE provides a solution 1o the
problem of segmenting the continwous speech stream tto words. Indeed,
TRACE 1s sometimes thought of as a computational implementation of some of
the wleas first expressed in the Cohort model.

In recent years TRACE has become the most widely applied model of human
spoken word recognition. The success of TRACE as a psychological model is
probably attributable 1o two main factors. First, TRACE is very broad in its
coverage. It successfully simulates a broad spectrum of psychological data ranging
from compensation for coarticulation to data on word recognition points. Second,
TRACKE is computationally explicit, There is no reom for debate as to the
predictions TRACE makes. The code for TRACE has been widely distributed
amd other researchers {e.g., Franenfelder & Peeters, 1990) have been able 1o
make extensive use of TRACE simulations in their own work.

However, despite its success, TRACE hay not gone unchallenged. Some of the
ceniral theoretical assumptions of TRACE have aroused considerable con-
troversy, TRACE is an expression of a highly interactive view of spoken word
recognition in which there 1s a continuous two-way fow of information between
lexical and phonemic processing. This interactionist view has veceived a stroag
challenge from bottom-up theories in which the processes involved i phoneme
recognition are completely antonomaous and receive no top-down feedback from
lexical analysis (Cutler, Mehier, Norris, & Segui, 1987, Massaro, 1989). In the
last few vears a& aumber of studies have produced resuits which favour the
autonomous view over the interactionist standpoint represented by TRACE
{Burton, Baum, & Blumstein, 1989; Burton, & Blumstein, MS; Cutler et al,
1987; Fravenfelder, Segui, & Dijkstra, 1990; McQueen, 1991a).

An additional problem for TRACE is that it emiploys an architecture of rather
guestionable plausibifity, In TRACE the problem of time-invariant recognition is
solved by duplicating the entire lexical network many times. A theory which could
avoid the need to duplicate lexical networks would represent a considerable
advance over TRACE,

The present paper develops a new model of spoken word recognition which
addresses these two central deficiencies of TRACE. Consistent with the empirical
data, the model is entirely bottom-up in its operation. In many respects the model
can be considered to be an implementation of the bottom-up race model of Cutler
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and Norris (1978). The model also addresses the problem of the plausibiity of the
TRACE architecture. Like TRACE, the Shortlist model relies on competition
between lexical candidates tied to specific locations in the input. However,
Shortlist the competition takes place within a small, dypnamically generated
network which only ever considers a handful of lexical candidates at any one time.
The structure of the model enables it to perform simulations using realistically
sized vocabularies. Simulations are presented which show that the model
performs weil with large vocabularies even when the inpuat is degraded or
potentially ambiguous. A bottom-up architecture is no barrier to efficient
performance. In word recognition, top-down feedback from the word to the
phoneme level is redundant because all of the crucial lexical constraints can
operate entirely within the lexical level niself.

2. The data

Cutier et al. {(1987) reported twe findings which require revisions of TRACK.
First, they found that phoneme monitoring latencies to word-initial phonemes
were faster than to phonemes beginning non-words, McCieftand and biman
{1986) argued that effects of lexical status should not manifest themselves on
word initial phonemes because the lexical activation will not have had time to
huitd up sufficiently to feed back down to the phoneme level. Second, Cutler et
al. showed that the effect of lexical status was dependent on the composition of
the stimuli. Effects of lexical status emerged only in lists where the items varied in
sumber of syllables. In Lists of monosyllables the effects disappeared. Cutler ef al.
interpreted their results in ferms of a race model (Cutler & Norris, 1979) in which
attention could be shifted from a phonemic to a lexical analysis. They suggested
that the menotony of the monosyliabic lists led subjects to attend primarily to a
phonemic analysis of the imput, whereas in the more varied lsts they attended
more o the results of a lexical analysis. An attentional explanation of this kind
fits in wel with a race model where there are two sources of information about
phoneme identity. Attention can be shifted between the phonemic fevel and the
lexical level. However, in TRACE there s only a single source of phoneme
identity information. Phonemes can only be recognised by reading out in-
formatien from the phoneme nodes. To accommodate these resuits TRACE
would need 10 be modified so that all of the top-down word-phoneme connections
could be altered to produce more top-down activation in the more varied lists,
Such a mave would aceount for the data buf would be harder to motivate than the
attentional explanation offered by Cutier et al.

Frauenfelder, Segui, and Dijkstra (1990) also used the phoneme monitoring
task to examine the predictions of TRACE, They measared monitonng latencies
to phonemes occurring after the uniqueness point of a word. In some instances
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the target phoneme was altered to form a noaword; for example, the /1/ in
vocabulaire was altered to a /t/ forming vecabutaire. Reaction times to the /¢/ in
vocabutaire were compared 1o reaction times to the /{/ in the control nonword
socabuwtaire. According 0 TRACE, top-down feedback from the lexical node
corresponding 10 vocabulgive should whiblt identification of the /t/ in vocabutaire
but not in socabutaire where there should be only minimal lexical activation.
However, although Frauenfelder et al. found facilitatory lexical effects in the
word conditions in their study, they found no evidence of the predicted inhibition.
This absence of inhibition is, however, exactly what is predicied by an autonom-
ous theory such as the race model of Cutler and Norris (19793 in which there i no
top-down influence of lexical information on phoneme Wentification. According
to Cutler and Norris, phoneme ilentification is a race between a phonemic route
and # lexical route in which the phonological representation of a word is accessed
from the lexicon. The lexical and phonemic routes are compietely independent
and responses are determined by a first-past-the-post race. If the phonemic route
wins the race. then lexical information will bave no influence on the outcome. So,
identification of the /17 in vocabulaire will be Taster than in the non-word
socabulaire because words benefit from the operation of the faster lexical route.
However, the /t/s in socabutaive and vocabutaire will be identified equally guickly
because both will be identified by means of the phonemic route.

Concerns over the importance of top-down feedback have also been raised by
recent studies by Burfon et al. {1989), Burton and Blumstein {(MS), and by
McQueen {1991}, These studies suggest that top-down effects of lexical m-
formation on phoneme identification may be far less pervasive than a highly
interactive model like TRACE would suggest. Top-down cffects may well be
dependent on the guality of the stirnuiug and may only emerge when the stimuius
s degraded in some way, either by low pass filtering or by the removal of
phounetic cues. Even then, the effects do not appear to be consistent (for a review
of lexical effects on phonetic categorisation see Pitt & Samuel, 1993). The study
by McQueen investigated the effects of lexical information on the categorisation
of word final fricatives. According to TRACE, the top-down effects of lexical
activation on phoneme perception should be at their strongest in word-final
pomtion, Subjects in McQueen's study heard stimull in which the final fnicative
varied on a continuum between s/ and /{7, TRACE predicts that subjects
hearing stunudt on a /Miw/ - /fif/ continwum should show a shift in their
categorisation function such that ambiguous stimuli are more likely to be
wentified as /§/. The top-down activation from fish shoudd bias the pereeption of
the ambiguous phoneme. This bias should be present even for stimudi presented
under good listening conditions. However, the predicted lexical bias was only
present when the stimuli were low-pass filtered at 3000 Hz. Furthermore. the
fextcal bias was most apparent in the case of the fastest respoenses. MoQueen
argues that this pattern of results is contrary to the predictions of TRACE but in
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ine with the race model of Cutler and Norris. 1a TRACE, lexical bias should be
dependent on the activation of the lexical node. Lexical activation should grow
over time. Therefore later responses should show a greater lexical bias because
there will be more top-down fecdback. According o the race model, iexical
effects will be most apparent where the lexical route tends fo be faster than the
phonoiogical roate. Lexical offects should therefore be largest in the fastest
TESPONSES.

The common thrast of the empirical evidence against TRACE is a concern that
McCielland and Elman may have placed too much emphasis on the importance of
top-down information. Certainly, lexical information may influence phoneme
monitoring and categorisation responses under some circumstances but there is
very littie evidence to suggest that this is mediated by an interaction between
lexical and phonemic information of the [orm incorporated in TRACE. The
strongest support for the interactive view comes from a study of compensation for
coarticulation by Elman and McCleliand (1988), Ehnan and McClelland pointed
out that, within TRACE, activation of a phoneme node caused by top-down
miormation will be indistinguishable from activation caused by boitom-up
perceptual information. Ia compensation for coarticalation {Mann & Repp. 1981,
Repp & Mann, 1981), the interpretation of one phoneme is biased by the nature
of the preceding phoneme, There is universal agreement that this phenomenon
must operate af the phoneme level and not the lexical level. So, if the
mterpretation of the preceding phoneme itself could be influenced by top-down
evidence, TRACE has to predict that the preceding phoneme would behave
exactly as if it had been activated by perceptual evidence. Therefore, there should
stili be compensation for co-articulation regardiess of whether the evidence for
the phoneme is bottom-up or top-down, This is what Elman and McCleiland
found. However, according to a bottom-up model, lexical information could not
possibly feed back down to the phoneme level. A iexically induced bias should
never be able to alter the tow-level Interpretation of a phoneme 50 as fo infuence
the compensation for coarticulation effect.

However, as McQueen (19910} has shown, the lexical effects in this study are
critically dependent on using shightly degraded stimull. According t¢ TRACE
such effects shouid be present even with undegraded input. Also, Norris {1992,
1993) has successiuily simulated Elman and McClelland’s results using a back-
propagation network i which there are no top-down connections at all. Indeed,
1 the network used in one of the simulations presented by Norns there are not
even any word nodes. S, there 15 stll tle evidence 1a faveur of the kind of
top-down interaction embodied in TRACE.

The alternative view, exempiified by the race model of Cutler and Norris, is
that behaviour which appears to be mteractive is duc to the fact that phonemic
information can be derived from two sources. Phonemes can be identified cither
by a direct phonological analysis of the input, or by accessing the word’s
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phonological representation in the lexicon. In TRACE. of course, there is only
one source of phonological information, the activation of the phoneme nodes
themselves. There are no lexical entries containing phonological representations,
s0 lexical effects on phoneme identification can only be explained by top-down
Interaction.

It s worth emphasizing at this point that, despite the substantial differences in
the theoretical claims underlying TRACE and the race model, the two theories
have proved very difficult to tease apart. By and large. both theories can account
for the same set of phenomena. For example. in the Ganong effect {Ganong,
19803 which forms the basis of the studies by Elman and McCleliand and by
McQueen, the interpretation of an ambiguous phoneme in a string which is
ambigucus between a word and a non-word is biased so as 1o make subjects more
likely to identify the phoneme so as to form a word than a aon-word. In Ganong's
original experiment subjects heard sequences beginning with a phoneme on a
continuum between 7t/ and /d/. One end of the continuum was a word., the other
a non-word. Subjects were more likely to identify ambiguous phonemes in the
middle of the continuum as being consistent witl the word interpretation than the
nop-word. For example. on hearing the midpoint of the continuum “type’ -
“dipe™ subjects were more likely to identify the ambiguous phoneme as /t/ than
/di. According to TRACE, this result is due to the top-down activation from the
partiaily activated word node altering the activation of the phoneme node for /¢/.
According to a race view this result is due to subjects reading out phonological
information from the lexical representation of “type’™ when there is inadequate
bottem-up evidence to identify the phoneme clearly. So, although the Ganong
effect appears to be due to top-down interaction it can equally well be explained
in terms of a race between lexical and phonemic processing.

Although the basic effect of lexical information on phonetic categorisation can
be explained be ecither bottom-up or top-down theones, we have seen that
TRACE and the race model do make predictions which differ in important
respects. The detasted pattern of results observed by Cutler ef al., Frauenlelder et
al. and McQueen tend to tip the balance in faveur of the race model. Currently,
the strongest evidence in support of TRACE comes from the study by Elman and
McCieliand. However, as has already been mentioned, even this result can he
simulfated using a recurrent network with no top-down lexical feedback.

1. Fime-shift invariance

Although the empirical lindings clearly pose problems for TRACE, the most
worrying aspect of TRACE 1s the implausibiity of its architecture. in order to
demonstrate time-shift invariance, that is to be able to recognise words no matter
when in fime they begin, TRACE has to employ multipie copies of the basic
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lexical network. TRACE needs one copy of the network aligned with each point
in time where a word might begin. The basic architecture of TRACE was
mherited from the interactive activation model of visual word recognition
(McClelland & Rumelhart, 1981; Rumeihart & McCleliand, 1982). The original
interactive activation model emploved position specific letter detectors. That is,
there had to be separate letter nodes for an “A” in word initial position and for
an A" in second position. The model could only deal with four-letter words and
therefore had four separate sets of position specific letter nodes. I a word was
presented to the network misaligned so that its first letter appeared in slot two, it
could not possibly be recognised, because a letter in position two is treated as a
completely different obiect from the same letter in posttion one. In the case of
visual word recognition, position-specific letter nodes might be considered to have
some degree of plausibility. Written words are usually bounded by white space. So
it might be possibic to line input words up relative to the space. The first word
after the space is position one, the second is position two, and so forth. Preceding
the network with a special alignment process weuld at least allow it to work,
However, the plausibility of the model would stilf be open to question, But the
case of speech is rather different from that of visual word recognition. There are
not usually any reliable cues to word onsets. Words can begin at almost any point
i the input, so it would be impossible to construct a reliable alignment process to
fine the network up with word onsets.

Ta overcome this problem TRACE duplicates the basic word recognition
aetwork so that there is a complete lexical network starting at each point where a
word might begin, If an utterance has 50 phonemes then TRACE would need 56
texical networks to process it. Word nodes within these networks are then
connected via inhibitory links to ensure that only a single word is recognised in
any given stretch of the input. Apart from the problem that this brute force
solution lacks subtiety and aesthetic appeal, it also faces another difficulty. Siumply
duplicating lexical networks is not a general solution to the time invariance
probiem. If we want to build a system that will recognise any word in an utierance
3 seconds long we could build an array of 30 or so lexical networks, one for each
phoneme {potential werd onset) in the utterance. But there clearly has to be
some Jimit on the number of lexical networks that we can use and this would place
& fimit on the length of utterance we could listen to.

A slightly better solution might be to connect the networks together in a ring
with a length determined by memory span. The isput wouid simply be cyeled
round successive networks in the ring. So loag as activation decaved before each
section of the ring had to be reused, such a system would be able to deal with
utterances of unfimited length.

However, we are still left with the awkward feature of duplicated lexical
networks, 1s it possible to achieve the same resuits as TRACE with ondy 2 single
network? One way to perform time-invariant recognition is to use back-propaga-
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ton networks with time-delayed conaections. Norris (1988, 1990, 1993} has
shown how a very simple network architecture can perform time-invariant word
recognition using a single network. Other architectures with time-delayed and
recurrent coanections are now in common use as pheoneme recognisers {e.g.,
Robinson & Fallside, 1988; Waihel, Hanazawa, Hinton, Shikano, & Lang, 1988;
Watrous, Shastri, & Waibel, 1987) in automatic speech recognition systems. The
neiwork used by Norris is shown in Fig. 1. The networks in Fig. i(a) and (b) are
functionally equivalent. However, the representation in Fig. 1{b) emphasises the
network’s heritage from a network originally proposed for production of se-
quences by Jordan {1986).

‘The network has a single set of input nodes corresponding to a featural
description of the input phonemes, and a single set of output nodes, one for each
word In the network’s vocabulary. The input to this network consists of a featnral
representation of the phonemes. The features of successive phonemces are
presented to the same set of Input aocdes in sequence. Thronghout the presenta-

{a) {h)

Figure L. Two aliernaive represeniaions of a simple recurvent network. Iu faf there are time-detaved
weights frierconnecting all of the hidden units. In (b} the Aidden unit activations are shown
as being copied 10 & ser of siare unies which are, i ten, connected o all hiddes anifs. Links
marked “x7 have o defuy of pue time unit (rot ol conneciions shown),

P8ee Norris {1990} for 1 comparison of the production and recogninion arohitectures.
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tion of ¢ach word the network is trained to activate a single output node which
identifies the word, and all other cutput nodes are set to zero. The delayed
conpections i the network ensure that at each point the hidden unit activation
generated by the previous input is fed back to the hidden units. So, at all umes,
the hidden units have access to mformation shout their state on the previous fime
cyele. The state on the previous cycle was itsell determined by the state on the
cyele before that, The delayed connections therefore provide the setwork with a
memory for its prior acliocns and enable i1 to integrate informiation across time,
Therefore, no matter when in time a word begins, the network will be able to
builld up the same internal representation of the word and the word will be
recognised.

A simple network like this does a rernarkably good job at simulating the kind of
data that is often cited in support of the Cohort model (Marslen-Wilson, 1980,
1984, Marslen-Wilson & Welsh, 1978; Marsien-Wison & Zwitserlood, 1989), It
will recognise words at the earliest point where they become unigue. Before a
word becomes unique it will activate all meinbers of the cohort. Words cease to
become activated as soon as inconsisient input is received. This kind of
architecture is also good at accommadating variations in the rate of inpui. A
network trained to recognise patterns presented at twoe different rates generalises
very well to instances of the same patterns preseated at a different rate (Norris,
1980}, An interactive activation setwork has ne means of performing such
“time-warping” or generalisation across presentation rates.

However, although this network has muny desirable properties, it does have
one rather serious deficiency which, in fact, is a direct consequence of the decision
1o use a lexical network with a single set of output nodes. The ocutput of the
network at any time effectively represents the network’s best bet as to which word
i in the input at one particular point in time. Consider what happens if the
network receives an input such as catalog. When the network processes the 7t/ it
might activate eqt while still having Httie or no activation for cafalog. By the end
of the word catalog should be activated and there should no fonger be any
activation for cat. Anyone transcribing the outpat of the network would therefore
simply see two output nodes activated in succession, one corresponding to caf and
the other to catalog” The nput catlog will also activate fwo words; car and log,
Without access to a phonological description of the words there wonid be no way
of knowing that ¢ar s just 2 spurious transient response to the initial phonemes of
the word caralog in the first case, but a correct identification in the second case.
The only way to know that car should be jgnored 18 10 be able to examine the
phonological representations of both car and caralog and to realise that cas beging
with the same three phonemes as cafalog. Without access to phonological
representations, /katolpg/ and /ketlpg/ will both be transeribed as containing

"oy will tend to be inhibited by the activation of cataiog.
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two words. Decause the network has only a single set of output units if can only
indicate its current interpretation of the input, 1t has no way of going back in time
to revise earfier decisions which need to be altered in the light of foliowing
context. It cannot represent both the initial response cm’rf,spon{img to the

network’s best guess based on evidence avail
based on following context.

We could make the network delay us decisions until more context was
available, but then it would no longer correctly stmulate data showing that words
can be recognised almost as seon as they become unigue (Marslen-Wilson, 1980,
1984). Note that simply extending the network 1o have extra outpuds representing
the network’s past history of decisions does not provide a general solution to the
probiem. [t might appear that the network could learn to inhibit car whenever
cadalog 18 recognised. However, every time a new embedded word such as cat 18
tearned the network would have fo be retrained with all words i which # s
embedded. Also, if caralog is misperceived as cadalog, calalog may be successful-
¥ recognised, but the network would also recognise cad as it would not have been
trained on the relation between cad and caralog.

A general solution 1o this probliom of how to deal with “right-context™ requires
that evidence from a particular part of the input can only be used to support a
single word, If /kat/ is being taken as evidence for catalog then it can not also be
taken as evidence for cat. Alternative lexical hypotheses like cat and catalog need
to compete with each other for the available perceptual evidence to ensure that
only the best fitting candidate wins through, This 15 exactly what the lexical Jevel
of TRACE does. Word nodes in TRACE compete by means of the inhibtiory
connections within the word level. Words receiving support from the same input
phonemes inhibit cach other so that the network’s final interpretation of the nput
i5 unhkely o contain two words that receive input from the same phoneme.
However, TRACE effectively considers all words in the lexicon to be active
iexical hypotheses all of the time. Dvery word in the lexicon 8 1n constant
competiiton with every other word i the lexicon. In fact each word 1s in
competition not oniy with a compiete set of all possible words beginning at the
same point in the inpat, but also with nodes for any words beginning at othet
positions which would share overlapping mput phonemes. For exampie, in a
504000 word fexicon in which all words were six phonemes in length, TRACE
would need a muinimum of 530006 word nodes to process a word in continuons
speech.” As TRACE requires bidirectional inhibitory links between every pair of

T The word nody correspending to the anser of 3 G-pheneme wgmfi hus tes be eoenecied 1o #l! other
words in the same segment. 10 word nodes in all of the previous 5 sepment positions, because af of
these words overbap. and (o word nodes in the § other segment positions 1 the remainder of the word.
This makes a total of 15+ 30008 — | other word nodes that a canditate word node i the middie of
continaous speech peeds 1o be connected to. Every pair of nodes eorresponding w overlapping words
then needs 10 be connegted fogether,
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nades corresponding to overlapping words, the lexical level alone of this actwork
would require 113 749 724 94 connections, This is the main seurce of TRACE’s
implausibility, Because the eatire lexicon is involved in competition, the entire
lexicon has to be duplicated at each time slice.

So, whereas TRACE suffers from the implausibility of having to use multiple
lexical networks to solve the time invariance probiem, the recurrent aetwork
suffers precisely because it does use only a single network with a single set of
lexical nodes. Because it uses only one set of output nodes, it is unable to revise
prior decisions in the light of new information,

The fimitations of the recurrent net demonstrate that the lexical competition
process incorporated into TRACE 15 not simply a move forced on TRACE by the
use of muitiple position-specific lexical networks., Any spoken word recogniser,
even one which uses only a single lexical network, must be able o compare the
merits of competing lexical candidates and to take aceount of the constraints
mmposed by overiap between alternative candidates. In automatic speech recogni-
tion systems this problem s generally solved by aigorithms like dynamic
programming {Beliman, 1957) and its descendents (e.g., Chien, Lee, & Chen,
1991; Thompson, 199G; Tomita, 1986). In these technigues the task is generally
expressed as being one of finding an optimum path through a word fattice. The
word lattice encodes the lexical candidates, their start and eand poiats, the
evidence n their tavour, and possibly the transition probability between succes-
sive candidates. TRACE performs this same function in a connectionist system
rather than by traditional programming methods. We can think of the initial
bottom-up input as specifying the word iattice, and the final sequence of highly
activated words as specifying a path through the lattice.

What we wounld like to do would be to find a way of combining the best
properties of the recurrent network with the best properties of TRACE. That i,
we would Bke to use only a single lexical network, but at the same time ensure
that each segment of the input is oaly ever attributed {0 a single word, even when
foltowing context causes the initial interpretation 1o be modified.

One way to achieve this would be to use a recurrent network to generate a
small set of lexical hypotheses - a short-list. These lexical hypotheses could then
form the basis of a small interactive activation network which would perform the
lexical competition. We can think of the recurrent net as generating a set of Jexical
candidates {the word-iattice) based purely on bottom-up information. No top-
down feedback from later processes influences either phoneme recogniion or
gencration of the candidate set stself. This small set of candidates then has
somehow to compete with each other in order 10 determine the final parsing of
the input. I we could construct a network like the lexical level of TRACE which
oniy contained the candidates generated by the recurrent network, then we could
avord the problem of duplicating the lexical network. We would need two
networks, but only one would be a full-blown lexical network generating lexical
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candidates. The other would be a relatively small network to handie the right-
context problem.

Given that the second network in such a scheme would have to contain
different information at different times, depending on the candidates generated
by the recurrent network, it would have fo be programmabie. The network would
have to be wired differently for different inputs. We have to have g network that
is rather different in character from niost connectionist networks. Most networks
have a fixed wiring scheme. Although the pattern of weights in connectionist
networks often vary as & function of learning. all that changes in the short term s
the pattern of activation evoked by different tnputs. That is o say. such actworks
compute the same function irrespective of the input. In the present network the
effective patiern of connectivity in the network also has to change on a short time
scate. The connections in the aetwork must be programmabile so that parf of the
network can compute different functions when presented with different inputs.

Interactive activation networks are sutficiently powerful that we can use them
to construct complex lavered proeessing models ke TRACE. In general, such
networks can have any possible pattern of facilitatory and inhibitory connections
between nodes, However, the constraint satisfaction system we require o carry
cul the iexical competition process has a very restricted architecture. Each node
(fexical candidate) is connected to other nodes represenfing incompatible lexical
hypotheses by means of bidirectional inhibitory links. The weights between
competing units are symmetrical. This means that we could alse perforn the
fexical competition process using other connectionist constraint satisfaction
procedures such as & Hopfield net (Hopficld, 1982) or a Bolzmann machine
{Hinton, Seinowski, & Akley, 1984). Alternatively, of course, we could compute
the best path through the set of lexical candidates using an algorithm sach as
dynamic programming or a related technigue. These alternative ways of mple-
menting the constraint satisfaction process will all produce similar results.
However, the interactive activation aigerithm used by TRACT is both simple and
familiar and will be used in all of the simulations reported here. It is important to
note that in the interactive activation network used here the only interaction s
between word nodes at the lexical level. There is none of the between-levels
interaction which 1s such a characteristic feature of both TRACE and the
interactive activation model of visual word recognition. In the present model the
direction of infonnation flow between levely s always strictly bottom-up.

McClelland has suggested that some of the problems involved in duplicating
fexical networks in TRACE can be overcome by using programmabie networks
{CIDs) of the form used in the programmable blackboard model of reading
{McClelland, 1985, 1980a, 1986b}. According to this suggestion, the hardwired
lexical networks would be replaced by programmable nefworks whose con-
nections were determined by a single central lexical network. Al of the crucial
texical information is then represented in the single lexical network and the
programmable networks are programmed as and when required. Al of the lexical
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information 1s stored in a single network so any learning that takes place can be
restricied to this one network. Alse, MceClelland {(1986a) argues that the
programmable networks can have fewer connections than hardwired lexical
networks, so the system s more economical,

However, McClelland’s proposals solve only part of the problem. The Con-
neetion Information Distribution {CID} scheme deseribed by McClelland is only 4
solution to the time-invariance problem. it tells us how to program a set of smail
lexical networks, so that we can recognise words starting at different times, but it
does not tell us how to wire the inhibitory connections between overlapping words
in different networks. H js these inhibitory connections which give TRACE s
ability to deal with rnight-context. Programming the inhibitory consections
between words in different lexical networks represents a rather harder problem
than programming the networks themselves. Whether two words in different
networks should have inhibitory connections depeads on the conjunction of their
positions and their lengths. The central module of a CID is not sensitive to
position or length of a single word, let alone the conjunction of two words.
Clearly, we don't want the CID to encode a complete matrix specifying, for all
possible word pairs and ali possibic onset positions, how much inhibition there
should be between them. This wonld be equivalent to listing all of the inhibitory
connections between words in TRACE. To reduce the number of inhibitory
lexical connections we need to abstract over length and onset position rather than
encode inhibitory information in a permanent store. We need a mechanism to

e ey e frnid  anan

determine whether words overlap and o arrange for them to inhibit cach other
accordingly. CIDs do not provide such a mechanism,

The suggestion being made here is that a single programmable network is nsed
simply to solve the right-context problem. The time invariance problem will be
solved by a version of the recurrent network, That is, instead of programming
word recognition networks, just program a network to perform the lexical
competition that is performed by the top lexical layer of TRACE. Such an
approach has the advantage that the network responsibie for lexical competition
need only contain as many nodes as there are candidates in the short-list. If we
can get by with considering only a few candidates starting at each segment
position, then # might be possible to keep the lexical network very small indeed.

4. The Shortlist model

The model being presented here assumes that a system similar to the recurrent
network generates a set of candidate words which are roughly consistent with the
bottom-up input. Each candidate word is then programmed inte a lexical
competition network working on the same principles as the lexical level of
TRACE. However, for the sake of computational expediency and speed, two
important simplifications are made. First, the process of using candidates to
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program the lexical network is not performed by any clever piece of consectionist
magic. Instead the model simply wires up the lexical network using conventional
programming technigues. Second, the recurrens network has one uadesirable
property: with currently available computing resources a recurrent network would

be prohibitively time consuming to train with a realistically large voecabulary. So

the output of the recurrent network is simulated by an exhaustive search through
a large machine-readable dictionary. Neither of these simplifications alier the final
behaviour of the model, they just ensure that the final behaviour appears in
seconds rather than years.

The maodel therefore consists of fwo stages. In the first stage an exbaustive
lexical search derives a shori-Hst of word candidates which match the input. In the
second stage these candidate words are wired iato the constraint satisfaction
network so that overlapping words inhibit each other in proportion to the number
of phonemes by which they overlap. As in TRACE, candidate words In the lexical
competition network are organised according o their onset segment in the Input.
However, in the current model the only candidates considered are those for which
there is some bottom-up evidence. Uniess the number of candidates is limited the
network could end up being as large as TRACE. In most of the simulations
presented here the number of candidates which can be consideced at each
segment is therefore lmited to 30, Later, simulations will be presenied which
specifically address the issue of the size of the candidate set.

If there are too many candidates at a given segment then the candidates with
the jowesi bottom-up activation are eliminated 10 make space for candidates with
higher scores, That is, they are unwired from the network and the new candidates
are wired in. The network spans a limited number of segments (currently the
length of the largest word in the lexicon). H the network wiring were fixed, like
TRACE, it would scon run out of space when receiving continuous input.
However, us cach new segment arrives the candidates starting at the oldest
segment are unwired to make space for a new set of candidates. The wiring of the
network therefore changes dynamically in response to changing input.

Botrom-up activation of each candidate word is determined by its degree of it
with the input. In the curreng version candidates are generated by an exhaustive
search of a machine-readable dictionary. All of the simuiations reported here use
a 6004 word subset of the CELEX database compiled a1 the Max Planck Institute
for Psycholinguistics. However, similar results have been obtained with two other
dictionaries, one of which has 26 004 entries.

5. The lexical search procedure

TRACE has to have a complete lexical actwork associated with each phoneme
in the input, The present mode! has to have a set of candidate words associated
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with each input phoneme. This small set of candidates performs exactly the same
10D as the full fexical network in TRACE, The candidates represent words with
onsets at that segment position where the match between the input and the
candidate exceeds some prespectfied criterion.

The lexical search procedure is designed 10 simulate the behaviour of a large
recurrent network in generating candidates in a purely bottom-up fashion. The
parallelism of the recurrent network has to be simulated by exhaustive serial
scarches of a dictionary. As cach new phoneme s presented o the mode] a
complete lexical scarch is performed spanning the mput up to N phonemes back,
where N is the size of the largest word in the dictionary, Obviously, if the longest
word in the dictionary is, say, 13 phonemes fong, then new bottom-up input can
never change the scores of words in the candidate set starting on the 16th
phoneme back. As each new phoneme arrives the complefe search and match
process has to be performed to revise the bottom-up match scores for words with
onseis at any of the previous N phoneme positions. The process has both to
update the scores for existing candidates and determine whether any new
candidates should be added to the sets.

For each word in the lexicon the search procedure computes a score represest-
ing the degree of match between the word and input for each segment where the
word miught start from. In most simulations reported ¢ach word scores +1 for each
phoneme that matches the inpet and -3 for each phoneme that mismatches. So,
if the current input is 7K/, fa/. 74/, “eat” and “catalog” will both score 3
(1+ 1+ 1) whereas “cap™ and ‘captain’ will only score —1 {1+1-3)." The
reiative weighting of match and mismatch information has an important influence
on the model’s behaviour and wili be addressed in later simuiations.

This scoring procedure has the merits of simpiicity and efficiency. However, a
more realistic procedure would almost certamly be able to make some allowance
for the possibility that failures in the phonemic analysis might resuit in insertions
or deletions of segments. With the present scoring method insertion or deletion of
a phoneme 1n the middie of a word will always result in a negative score.

Note that the use of a mismatch score can be considered analogous to the effect
of adding inhibitory phoneme-to-word connections to TRACE. The mismatch
score helps to restriet the number of candidates the model needs to deal with, burt,

* Note that the output of the search procedure shoutd be equivalent o ranning a version of TRACE
with phoneme-~word inhibition and no 1op-down connections of lateral inhibition and then creaming
off outputl words with greater than a given degree of activation.

This simple sepring procedure actually provuces some candidates thar are smlikely o he produced
by the recurrent network. Words embedded at the ends of other words {deride} will score s highly a3
words embedded a¢ the beginning (siding}. In line with the psychological data the recurrent net shows
Tess activation for words embedded at the ead of other words, The bottom-up seore could be modificd
to reflect this fact, but as the competitive network acwally produces the same behaviour anyway the
simplest possible botom-up score was used,
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Table 1. The operation of the search process. As each new phoneme arrives the
lexicon is searched for words beginning with that phoneme and previous
searches are updated

Input Search or words beginring
-k k

2. wt ke

3.t 1+t 4 ket

as wili be discussed {ater, it alse turns out to be necessary to account {or recent
empirical data {(Marslen-Wilson, Gaskeli & Older, 1991}

For a word to be included in the candidate set it needs to have a bottom-up
score greater than some preset criterion. Cursrently words more than one
phoneme in length enter the set if they have a score greater than 1. Single
phoneme words enter the set if they have a score of 1. Once a word 15 included
the candidate sel il slays there unless it is displaced by a higher scoring word,
even if its Bottom-up score drops below criterion.

Table 1 shows an example of the operation of the search procedure.
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Each candidate that the lexical search generates is wired into the lexical
network, The most important feature of the lexical network is that words which
receive support from the same section of the mput must compete with each other.
With few exceptions each phoneme should only be part of a single word. This
means that overlapping lexical candidates must be conpected together by
inhibitory links. The weights on the inhibitory links are simply proportional to the
number of phonemes by which the candidates overlap. The greater the overlap,
the greater the inhibition. The pattern of inhibitory links between a subset of the
candidate words generated from the iput /katolpg/ i shown in Fig. 2. For
clarity the figure only shows the wiring of nodes which fully match the input.
Candidates such as batle, which only partizlly maich the input, are not shown.,

The bottom-up activation of each candidate node is a product of the bottom-up
score for that candidate and the bottom-up excitation parameter. The lexical
network is an interactive activation setwork and functions in exactly the manner
deseribed by McClelland and Rumelhart {1981}, The full set of model parameters
1s listed in the Appendix,

In summary then, the model operafes as follows: As each new phoneme is
presented to the model the lexical scarch procedure first updates the candidate
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catalog
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kaetolovg

Figure 2. The panern of inhibitory connections between candidaies produced by presentation of
theetalngd, The figure shows only the subser of candidaies completely matching the inpif.
The full candidare set would also include words such as baule, caralyss, etc.

sets and rewires the network as necessary. The lexical search also updates the
bottom-up activation score for cach candidate. The lexical competition network
then cycles through a figed number of cycles (15 cycles in afl of the present
simuiations) before the next phoneme is presented.

7. Cemparison with other models

The Shortlist model shares a number of features with other modeis of spoken
word recognition. In addition with its obvious similarities to TRACE, i also
manages to capture many of the ¢entral insights of the Cohort model. In common
with TRACE, Shortlist makes use of a4 competition mechanism to perform lexical
segmentation. In common with the Cohort modct there is a distinction between
the initial bottom-up activation of potential word candidates {the cohort) and the
subseguent winnowing down of the the cohort to identify a single word,

The model differs in a number of important respects from TRACE. First, the
information flow in the model is bottom-up. That is, no stage in the model sends
information back down to an carher stage of processing. Most importantly, there
i$ no top-down feedback from the lexical fevel to phonemic representations. The

" in a more complete implementation the bottom-up access procedure (search) would operate on the

input continuously, updating the bottom-up scores progressively rather than producing new oltput
ordy after ¢ach new phoneme.
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bottom-up activation to the word nodes in the lexical network is determined
solely by the degree of fit between the word and the input.

Words which mismatch the mput bave their bottom-up activation decreased. In
the present model this is an essenttal move to help keep the candidate set size
down to a manageable fevel. In TRACE there is no candidate set so there is no
sintifar pressure to use mismateh information. In TRACE the mismatch score
would be equivalent to having inhibitory connections between phonemes and
words. All of the position specific phonemes nodes would have ishibitory
conpections to words which did not contain that phoneme i that position.
MecCleltand and Elman discuss the possibilily of using phoneme-word inhibition
but devide against if, pointing out that the same effect is achicved by the
word—word inhibition. If the input is /ket/ then both car and cap will be
activated 10 some extent. Flowever, there will be no need for /t/ o inhibit cap
because lexical competition from caé, which will have higher activation, will
inhibit cap anyway.

The use of mismatch information in TRACE is therefore lexically mediated.
The input /kaet/ should inhibit cap because of the Jexical competition between ca
and cap. But /kaeg’ should not inhibit either cap or cat because [kag/ does not
have a lexical node to generate inhibition, In a recent study, Marsien-Wilson et al.
{1991} tested this prediction using a cross-modal priming paradigm. They found
that any deviation of the input from the target word was sufficient to eliminate
cross-modal priming regardless of whether the iaput was a word oF & non-word.
That is, while a word like /kat/ might prime dog. both /fkap/ and /kaeg/ would
be equally ineffective in priming dog. With short non-word primes there s a
possibifity that there might acver be sufficient lexical activation of the word to
produce priming. That is /ke/ might not activate cat much beyond resting level
However, they also found that word final mismatches failed to produce priming
even with long words where the mismatch occurred after the uniqueness poiat. In
these cases the non-word should have given rise to substantiai lexical activation.
For example, “apricod” failed to prime frudr. This lack of priming seems uniikely
to be atiributable to insufficient positive match information because sphicing off
the finai phoneme and preseating subjects with “aprico”™ produced similar levels
of priming to “apricot”. According to0 TRACE, only the word competitor shouid
eliminate the priming whereas the non-word shouid continue to prime. albeit to a
lesser degree. The mismatching non-word and the truncated non-word shoutd
produce identical priming. In the current model the degree of priming will depend
on the mismatch parameter. If the mismatch parameter is high then any deviation
will greatly reduce the activation of a candidate. With a very low mismaich
parameter a candidate may remain sufficiently strongly activated to still produce
priming.

A comparison of Shortlist and the Cohort model is hindered by the fact that the
Cohort model has no explicit computational formulation. In the most recent
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expression of the Cohort model {Marsien-Wilson, 1987} the all-or-none nature of
the onginal Cohort model has been tempered somewhat, Entry mto the cohort
now depends on some degree of goodness of fit between a lexical representation
and the input rather than on an ¢xact match, Recognition is no longer a matter of
reducing the cohort o 2 single member, but now depends “on the process of
mutual differentiation of levels of activation of different candidates”™ (Marsien-
Wilson, 1987, p. 99). In fact, there is po longer even a distinet set of words that
we can definitively state are members of the cobort. Many candidates may be
momentarily aciivated but “'it takes some amount of time and nput for candidates
to start ta participate fully in the selection and integration process” (p. 99). It is
this subset of active candidates which effectively constitute the word-initial
cohort. This set of candidates would seem to correspond closely to the members
of the candidate set in the Shortlist modei. However, in the present model the
functional distinction between those words which are considered to be members
of the candidate sct and other words 1 directly reflected in the architecture;
candidates, or members of the cohort, are given a representation in the candidate
sets which is distinct from the representation derived from the bottom-up access
procedure. Note that this is not simply an implementational concern, The need to
select a cendidate set is a necessary consequence of the need to deal with the
probiem of lexical segmeniation without duplicating the lexical network. The
wsue of Jexical segmentation is not one which the Cohort modet directly
addresses. However. the functional architectures of Shortlist and the Cohort
model are very similar. Both begin with a data-driven process of candidate
selection which makes use of a goodness of fit measure, and both use mismatch as
well as match information to home in on a singie candidate. This candidate need
not be the only candidate m the set, but should have a higher level of activation
than its competitors.

8. Relatienship to the race model of Cutler and Norris

One of the major characteristics which distinguishes Shortlist from TRACE is
the fact that Shorthist is a data-driven system. In Shorthist there is no tap-down
feedback from the lexical Jevel to the phoneme level. However, top-down
feedback is an essential component of the account TRACE gives of a number of
phenomena ranging from lexical influences in phoneme monitoring to sensitivity
to phonotactic constraings. Without this top-down feedback how can Shortlist
account for these important phenomena? The explanation given by Shortlist for
these phenomena is precisely the same as the explanation given by the race
model. 1n fact, we can think of Shortlist as being an implementation of exactly the
Kind of exical access system envisaged by the race model.

The empirical evidence against TRACE comes largely from studies contrasting
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the interactive predictions of TRACE with the predictions of bottom-up models
such as the race model of Cutler and Nosris, In the race model there are two ways
of performing phoneme idengification, one based on a purely bottom-up
phonoiogical analysis of the inpat, the other based on reading phonological
iformation out of the lexical r»nr:*apm‘mnn The two rontes race ,mmm‘r each
other and the final response is duermlmd by the first route to produce an ouiput,
Shortlist shares two basic features with the race model. First, the phonological
anpalysis 1s completely autonomous. There i no top-down feedback from the
lexical level to the phonological analysis. Second, the model has expiicit
phonolegical representations in the lexicon. Phonological information has to be
read out from these representations in order to ahgn lexical candhdates with the
input. if these representafions cun also be used for performing phoneme
identification the model has all of the basic components of the race model. It hag
a phonemic route from the phonciogical input, and a lexical route from the lexical
representations.,

Because it is a race model Shortlist s able to explain all of the phenomena
which have been cited as problematic for TRACE. For example, Frauenfelder,
Segut and Dijkstra’s demonstration that lexical effects on phoneme monitoring
can only be faciiftatory and not inhibitory s explained exactly as in the race
model. The race model assumes that although the lexical route can produce faster
responses than the phonemic roufe, no matter how much the lexical route 18
slowed this will have no impact on the ‘;peed of the phoremic route, Similarly, the

accounts of the phoneme monitoring data of Cutler et al. and the Ganong effect
data of McQueen are also 1dcm1c il to the race model explanations already

discussed.

9. Shortlist as part of a larger modular system

As described so far, Shortlist does not have the same broad coverage as
TRACE. Shortlist is intended primarily as a model of the lexical processes in
word recognition, However, TRACE s a model of both word recognition and
phoneme recognifion. The interactive nature of TRACE dictates that phenomena
at both the word and phoneme level have to be considered together. In TRACT:,
phosieme recognition, even in non-words, can be strongly influenced by top-down
feedback from the lexical fevel. 1n Shortlist, the processing at the phoneme level
is totally unaffected by lexical-level processing. Consequenily, Shortlist can be
considered to be a single component in a modular system (in fact it s two
components, generation of the candidate set followed by the lexical competition
processy. The other component nceded for a complete word recognition system is
a phoneme recogniser. The assumption being made here 15 that the phoneme
recogniser would take the form of the recurrent net described earhier. This is
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clearly a very practical proposition because similar networks are already in use in
automatic speech recognition systems. However, the advantages of such networks
are more than just technological, They also have interesting properties as
psychological models. The interesting psychological properties of such networks
sfem, once agamn, from the fact that the tme-delayed connections give the net a
memory for its previous processing operations and therefore enable it to integrate
information across time. So, for example, such networks readily learn to cope
with the effects of coarticulation (Norris, 1992, 1993}, The categorisation of each
phoneme can be contingent on the identity of the previous phoneme. In TRACE
such compensation for coarticulation is achieved by hard-wiring top-down
connections from the phoneme to the featural level. In a recurrent network
proper treatment of coarticulation is an automatic conscquence of the fact that
cach phoneme is processed in the context of & memory for prior processing
operations. The sensitivity to prior phonemic context exhibited by recurrent
networks can extend across a number of intervening phonemes o make the
network sensitive o statistical and phonotactic properties of the inpat.

For example, Norris {1993) simulated Elman and McClelland’s {1988} results
using a recurrent net identical to thas described in Fig. 1. The network exhibits
categorical perception, compensation for coarticulation (Mann & Repp. 1981
Repp & Mann, 1981) and the Ganong effect. Elman and MceClelland's results are
simulated by combining these three effects. The network was trained to identify
the carrent phoneme in the input and to anticipate the next. After training on a
set of three-phoneme “words™, the network showed a bias 1o interpret ambiguous
word-final phonemes so as to form a word rather than a non-word, The net had
learned the statistical regularities in ifs input so that after encountering the first
two phonemes in a woerd it would fill in the final phoneme ¢ven if no input was
ever presented. The network therefore displayed the Ganong effect by developing
@ sensitivity o statistical sequences in the input rather than by allowing any
tep-down flow of information from a lexical level to influence phoneme process-
ing. Because the network simply did not have any higher level nodes trained to
identify words there was no possibility of a top-down lexical influence on
processing. Shillcock, Lindsey, Levey, and Chater (1992) have extended this
work and shown that the results of these simulations held even with a vocabulary
of 3450 words. So, in the Shortlist model there are actually two potential sources
of the Ganong effect. Lexical effects may have their origin entirely within the
lexical level as in the race model explanation of top-down cffects, or they may
have their effect entirely within the phoneme level due to the phoneme level
developing sensitivity to statistical regularitics in the input.

The performance of recurrent anetwork phoneme recognisers, where sensitivity
1o phonotactic constraints and other statistical properties of the input develops
entively within the phoneme level, contrasts with the top-down explanation of
such phenomena offered by TRACE. In TRACE, sensitivity to phonotactic
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constraints anses because lexicat feedback favours mputs which obey phonotactic
constraints more than it {favours mmputs which vielate such constraints, The
expianation in terms of recurrent nefworks therefore represents a return o a
more traditional style of modular linguistic explanation in which phonotactic
knowledge is embedded in the phonological system itself, rather than being
implicit in the structure of words in the lexicon. The irony here is that the
top-dowrns TRACE explanation would probably only have occurred to someone
working within a connectionist framework. However, as we expand our con-
nectionisi horizons to inciude systems that learn, we find that they give a naturai
expression to the carlier and more modular theories.

The contrasting accounts of phonotactic effects given by TRACE and a
bottom-up theory such as Shortlist have some interesting implications in interpret-
ing data showing that lexical effects in phoneme monitoring may be modulated by
attentional and task factors (Cuiler et al., 1987, Eimas. Hornstein, & Pevion,
1990); Eimas & Nygaard, 1992} Where no lexical effects are observed, this implies
that there is little or no top-down activation in TRACE. If there s no top-down
activation there should be no phonotactic effects either, since they also depend on
top-down activation. In the Fimas and Nygaard study, no iexical effects were
observed when the target phonemes appeared in sentential context, but lexical
effects were obtained when the words appeared in random word contexts in
conjunction with a secondary task. If top-down effects are absent in sentential
context then, according to TRACE. phonotactic effects should be absent also.
This feads to the strange prediction that phonotactic effects should be absert m
the conditions corresponding most closely to normal comprehension. According
to the model being prescnted here, phonotactic effects are due entirely (0
operations within the phonemic level. Whether or not lexical effects are present s
determined by whether subjects attend primarily to the lexical or phonemic levels,
The phonemic level should continue to use phonotactic constraings regardless of
where subjects attention is directed. Also, the strongest phonotactic effects should
therefore be observed when responses are determined predominantly by the
phonemic level and lexical effects are at their weakest.

We can now sce that, ajthough Shortlist is primarily concerged with lexical
processes, it fits into a larger modular framework that gives a broad coverage of a
wide range of data on human speech recognition. As an implementation of the
race model of Cutler and Norris Shortlist inherits the ability to explain a range of
effects which appear to demonsirate an influence of lexical information on
phoneme identification. At the phonemic level, the work with recurrent networks
shows that lower level phenomena like categorical perception, and sensitvity to
phonotactic constraints can also be accounted for within this modular architecture
and thal phonemic processing remains completely unaffected by higher lovel
lexical processes. 1n the simulations that foliow we will sec that Shortlist
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complements this earlier work by showing how such a modular system can cope
with the taxing demands of large vocabulary word recognition.

19. Input representation

The primary input to the model consists of a string of phonemes. The choice of
input representation was determined largely by the simple practical consideration
that this is the form of representation used in most machine-readable dictionaries.
However, we also wished to be able to study the behaviour of the model with less
than perfectly resclved input, This was achieved by allowing the model fo accept a
mid-class phonetic transcription (Dalby, Laver, & Hiller, 1986}, The mid-class
transcriptions are used 1o represent a degree of uncertainty, or ambiguity in the
input. There are 12 mid-class categorics. cach of which corresponds to a small
class of phonemes such as voiced-stops. Phonemes within a mid-class category
tend to be highly confusable with each other (Miller & Nicely. 1933; Wang &
Bilger, 1973). The full set of mid-class categories s shown in Table 2. Each
mid-class category is assumed to match all phonemes in the class equally well, but
to mismatch all other phonemes. The mateh score for mid-class phonemes is set to
0.7 of that for a full match.

In addition to a full set of phonemes there is also a silence, or word boundary
symbol. The symbol for silence mismalches all phonemes. There i also a symbol
for noise. This symbol is designed to represent noise of a sufficient mtensity {o

Table 2.  Mid-class categories from Dalby et al. (1986}

voiced stops

voiceless SEops

strong voiceless fricatives
weak voiceless fncatives
strong voiced fricatives
front vowels

back vowels

central vowels
diphthongs

nasals

itquids

glides
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mask any speech input. The noise symbol therefore neither matches nor
mismaiches any phoneme.

11. Simulations

The central motivation behind the present model is to provide a solution to the
right-context problem faced by the simple recurrent network. So the first question
we have to ask is whether the model can successfully handle cases like catalog.
Figure 3 shows the model’s behaviour when presented with /katslpg/ as input.

In this figure, as with all other representations of the model’s output in the
paper, the lings indicate the activation level of particolar candidate words
following the presentation of each successive phoneme. The starting segment of
the candidate words is never indicated because this can always be readily deduced
from the input. For example, /kat/ and /katalpg/ must clearly both be members
of the candidate set beginning at the phoneme /K/. The graph simply indicates
how the activation of these two words in the [k/ candidate set changes over time.

The ontput of the model is exactly as one would have hoped. Initially caf is
slightly more activated than cafafog, but once the /2/ arrives the situation
reverses until finally catalog completely suppresses egf, The initial advantage for
car over catalog is due to the fact that car is shorter. Inhibition between words 15
proportional 1o the number of phosemes by which the words overlap. Long words
have miore overlap with other long candidates and therefore receive more
mhibition than short words. TRACE exhibits the same behaviour for exactly the
SAME TEA%ONS.

The case of processing words containing other embedded words s only a single
example of the importance of taking right-contexi into acconnt in spoken word
recognition. A number of studies have now demonstrated that information
presented after word offset can have an important role in word recognition
{Comnine, Blasko, & Hall, 1991; Cutler & Norris, 1988; Buard, Shillcock, &
Abtmann, 1988; Grosjean, 1985). For example, Bard, Shillcock, and Altmann
used a gating task to show that 21% of words successfully recognised in
spontaneous specch are not recognised until well after their offsef, The study by
Connine et al. attempted to estimate the fime span over which right-context can
continne te excrt an influence on carlier processing. They had subjects identify
words whose initial phoneme was phonetically ambiguous (TENT/DENT),
Semantic context was found to influence the categorisation of the ambiguous word
if it arrived within three syllables of #ts offset but not if it was delayed ungil six
syllables after the word's offset. Taken together these studies make it clear that
any satisfactory model of human speech recognition must have the Sexibility to
keep its options open for several phonemes so thal early decisions can be
modified by laler context.
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Figue 3. Activation of the words eat™ and “catadog’ when the model is presented with the inpud
vcatalog. Note that words shown oy having zero acrivation are not in the candidate set.

2. Mismatch evidence

Int order 1o keep the candidate sets down to manageabie proportions we need to
assame that any mismatch between a candidate and the input will reduce the
candidate’s bottom-up score. Mismatch information can also act to speed
recognition of the best fitting candidate. Candidates that do not fit the input wili
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rapidiy have their activation reduced and will therefore present less competition
for the winning candidate, It also turns out that mismatch information is
important to account for the results of the study by Marslen-Wilson, Gaskell, and
Odder. The question that arises though is what the relative weighting of match and
mismatch information should be. i the weighting of mismarch information 8 100
smail then it will not do its job of keeping down the size of the candidate sct and
speeding recognition. If it is too big then any small errors in the pronunciation of
a word will reduce the bottom-up score so much that the word will not be
recognised. With a very large weighting of misimatch information the model would
behave rather like the fist version of the Cobort moedel. Words would effectively
drop out of the candidate set as soon as the input deviated in any way from the
expected form of the word. Norris (1982} pointed ocut that this was a major
problem for the original Cohort model. If the Cohort model heard cigaretie
pronounced “shigarette”™ it could not possibly be recogrised because cigareffe
wonld never be incorporated 1nte the cohort, The same problem wounld arse  the
initial phoneme of “cigarette” were masked by noise. The ability of the present
model to overcome these problems s assessed in the next simulation which
investigates the relative importance of match and mismateh information.

Figure 4 shows the growih of activation of ¢igarefic during the presentation of
/sigaret/, /Digoret/ and S Thgoret/, where /7 represents noise of sufficienar intensity
to mask any phoneme present. Remember that such noise neither matches nor
mismatches any phoneme, In this simulation the match parameter is set to 1.0 and
the mismatch parameter to 3.0. Both of the distorted inputs reach a relatively
high fevel of activation indicating that the model s not overly sensitive to small
devistions in the input, Note that / {igoret/ produces less activation thaa /?igaret/
because the /{/ is a mismatch o cigareite whereas the noise neither matches nor
mismatches,

Table 3 shows the final level of activation after presenting /sigorst###/,
[figaret#F##/ and [ Tigoret# #4/ for increasing values of the mismatch parameter
and the activation level after /siga/. 1f can be seen that although mcreasing the
mismatch parameter has no influence on the final level of activation of cigaresre,
by reducing the impact of competitors, it does help the word to be recognised
earlier. Increasing the value of the mismatch parameter bevond about 3.0 ssmply
serves to make the model more seasitive to shight distortions in the 1aput,
Although there s a tension between the reguirement to Keep the misinatch
parameter high to reduce competitors and keeping it low 10 avoid oversensitivity,
fortunately there is a middie ground where we can get most of the benehts of 4
high mismatch parameter without making the model too sensitive to small
distortions of the input. In this case, the model gives ns the best of both worlds.
On the basis of this simulation the mismatch parameter is set to 3.0 in all of the
rematiing simalations.
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Hgure 4. Activation levels of “eigarette” following presentation of “cigurette”, “shigarene” and
“Hgareie™ where 97 representy noise of sufficlenr intensity (o mask the iniiial phoneme
conpletely.

13. Ambiguity

The next simulations address the issue of how the model copes with ambiguous
input. This is examined by replacing at least one of the phonemes in a word by a
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Table 3. Activation after three periods of silence beyond end of word

Mismatch I 2 3 4 5

Jstgaret N .54 0,54 .54 0,54 .54
ffaporptd A/ {145 140 1.33 .25 —f1 {4
{poretd a4 (.50 {1.56 (.50 .56 £).54

Activation after fsipa/

Mismalch 1 2 3 ! :
feIparci# T (L7 {23 823 {324 332

mid-class transcription. The mid-class transcription ¢an be considered te be a
phoneme whose analysis has not been fully resolved. The input s still compatibie
with a smatl set of phonemes sharing a number of phonetic features. Comparison
of activation levels for the original fully franscribed word and the same word with
some phonemes replaced by mid-class transcripiions will give us some idea of how
robust the mode! is when presented with an imperfect input, Remember that the
S5000-word lexicon employed here is 30 times the size of the lexicon employed in
TRACE stmulations. Input containing some phonemes transcribed at the mud-
class level might therefore be cxpected to generate a very large number of
spurious lexical candidates which could severely hnpair the model’s performance.

Two simuations are presented, one using words three phonemes long, the
other using words six phonemes long. Each word is presented to the model
preceded by one randomly selected context word and followed by two others.
There were 50 three phoneme words and 30 six phoaeme words, Each word was
presented pnce with a full franscription, once with the first phoneme given a
mid-class transcription, and once with the final phoneme given a mid-class
transcription.

Figure 5 shows the mean activation levels for the three phoneme words plotted
from the initial phoneme through to the fifth phoneme following the word. Figure
6 shows the mean activation levels for the six phoneme words plotted from the
mitial phoneme through to the sixth phoneme following the word. Both figures
also show the average activation level of the strongest competitor to the presented
word.

Not surprisingly, the fonger words are clearly more resistant to degradation of a
single phoneme than are the short words, However, even in the case of the short
waords, the final activation fevel of the mid-class words is over ten times that of the
nearest competitor. The model is performing so efficiently here that its behaviour
is effectively a reflection of the properties of the selection of words in s lexicon.
Clearty this level of performance is only possible because the density of words in
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Figure 5. Average activation levels of o three phoreme word and 15 neqrest compefitor when the word
is clear or has either the first or last phoneme replaced by a mid- class transcription.

the lexicon is not so great that neighboring words become indistinguishable when

their first or last phonemes are given a mid-class transcription,

14. Continuous speech

The previous simulation involved recognising words embedded in context. The
next simuiation demonstrates the performance of the model on strings of words
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specifically chosen because they contain other words embedded within them.
Clearly such cases provide a strong test of the effectiveness of the competition
mechanism with a large lexicon. Figure 7 shows the output of the model given the
input “holiday weckend”. As before, the graph does not indicate the starting
segment for cach candidate, but this should be clear from the input. By the end of
the input the model has clearly resolved any temporary ambiguity in the analysis
of the input and only the desired words remain at a high level of activation.

Spuriously activated words have their activation suppressed below zero.
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Of perhaps greater interest, though, are cases where the interpretation of part
of the input depends on infermation arriving several phonemes downstream. In
the case of clearly transeribed input such examples appear to be rare. However,
as ambiguity increases so the role of right-confext will increase. The study by
Bard, Shillcock, and Aitmann demonstrated how, int a gating fask using conversa-

tional speech, words were often only recognised correcily well after their offset,
Figure 8 shows the model’s response to the input / {ipipkwareri/ {ship inguiry}. In

219
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Figure 8. Activation levels of words in the candidate set diring the presentation of the input “shipping
inguiry” with the lintil on candidate sef ¥ize at 30. Note that words shown as having zero
aetivation are not in the candidate ser. The example assumes British English pronunciation.

this example correct parsing of the input can only be achicved weli after the offset
of ship when inguiry has been recognised. Before that ship is inhibited by
shipping in much the same way that caralog inhibits car in Fig. 3. Only when
shipping itself is inhibited can ship win through.
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In cenjunction with the previocus two simulations this demonstrates how the
mode! remains remarkably robust even when the input is underspeciied or
potentially ambiguous for substantial portions of the input.

15. Candidate set size

In all of the simulations reported so far the candidate set for cach segment has
been limited to 30 words. The next simulation investigates the consequence of
reducing the candidate set to its minimum size. The minimum size of the
candidate set s (wo words, We need two words rather than one to deal with cases
like “ship inquiry” where part of the input has a misieading analysis. The word
shipping will always have a higher bottom-up score than ship because it contains
more phonemes, Therefore, once shipping has made its way into the candidate set
1t can never be displaced by ship, even i it is strongly inhibited by inquiry. Entry
mio the candidate set is determined solely on the basis of bottom-up information.
Therefore, in order to arrive at the correct interpretation of “ship inguiry™ the sel
needs to be able to hold both ship and shipping as candidates simultancously.

igure 9 shows the results of processing “ship inguiry’ using a limit of only 2
candidates per segment. As c¢an be seen, the activation levels are both quali-
tatively and quantitatively very similar in the two cases. The model works just as
welt with 2 candidates as with thirty.

With very degraded input the model will very likely need to consider more
candidates. However, the important issue is not really whether the model will
perform well with just two candidates per segment, but whether it can perform
well with a very small number of candidates, To the latter question we can
undoubtedly respond “yes”. Note that in the present version of the model the
available candidate nodes are permanently linked to a contiguous set of input
positions. However, it will generally be the case that many segments will have no
candidates at all because phonotactic constraints simply do not permit words to
start with particuiar sequences of phonemes {in #ipfoe there will be no candidates
starting /pt/}. Theretore only some fraction of the availahle candidate nodes will
ever be used. If candidate nodes were allocated dynamically only o segments
where they were needed then the total aumber of candidate nodes required could
probably be halved. So, on average we may well require only one or two
candidates per segment multiplied by the number of segments being actively
considered,

In the exampie given eariier of TRACE operating with a 50 600-word lexicon in
which ail words were six phonemes i length, we need 550000 word nodes and
the lexical level alone of this network required over 10" connections. Using, say,
10 candidates per segment the present network requires only 110 nodes and 4489
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conmections, With 3 capdidates per segment it would need only 1134 connections.
S0, with § candidates per segment the present model requires 107 times fewer
inhibitory connections than the lexical level of TRACE.



D Norris | Cognition 32 (1994} 189-234 223
16. Lexical competition

For their operation, both Shortlist and TRACE depend on competition
between muitiple lexical candidates. A large part of the present paper has been
devoted to presenting a theoretical case that some form of lexical competition is
an essential part of amy system capablie of recognising words in continuous speech.
Nevertheless, the case for competition would be strengthened by empirical
support for these ideas.

A number of studies have now used the eross-modal priming task to demon-
strate that multpie lexical candidates are indeed activated during the early stages
of auditery word recognition {Marsien-Wilson, 1987, 1990; Shilicock, 1990,
Swinney, 1981; Zwitserlood, 1989}, However, the fact that candidates are
activated 18 no gudrantee that they actually enter into competition with each
other. More convincing evidence for both activation and competition comes from
priming studies by Goldinger, Luce, and Pisoni {1989) and Goldinger, Luce,
Pisoni, and Marcario {1992}, These studies showed that recognition is inhibited
when words are primed by similar sounding words. Inhibition of the primed word
i$ assumed 1o be due to competitiom between the prime and the target, However,
the most dircet evidence of competition between lexical candidates comes from a
study by McQueen, Norris, and Cutler {in press). They employed a word spotting
task i which sabjects had to identify words embedded in nonsense strings. Some
of the nonsense strings were themselves the onsets ¢of longer words. For exampie,
subjects had to spot the word embedded in /domes/, the onset of domestic, ot in
the nonword onset /nomes/. In three experiments McQueen ¢t al, found that
target words were harder to detect in word onsets like /dames/ than in nonword
onsets hke /names/. The competitor word domesric appeared to be inhibiting
recognition of the target. These competition effects persisted even when subjects
knew in advance that target words would only ever appear at the ends of the
nonsense strings. Under these circumstances subijects could, in principle, have
ignored the onset of the competing word. So, not only do we have very solid
evidence that lexical competition takes place, but it appears to be a mandatory
process which subjects are unable to override even when the task would aliow
them to focus their afiention away from the source of campetition. McQueen et
al. presented simulations to show that Shortlist gives an accurate accouns of the
detailed pattern of competition effects observed in their experiments.

17. Processing prefixed words

With a small limit on the number of available candidates, prefixed words, or
any words with very farge initial cohorts, are going 1o pose problems. Even with
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thirty candidates there is no guarantee that a word like conductor will make it into
the short-list before the /d/. In the current implementation of the model the
candidates are flled by a serial rather than a parallel search through the
dictionary. This means that the members of a cohort listed first will enter the
candidate ser first and fill it up before later members are searched. However,
remember that the ordered search is actually intended to simulate a parallel
access process, 5o, a more plausible way of keeping the candidate set within limits
might be to include only the most frequent words returned by the search.

Something rather interesting happens if a word makes a delayed entry into the
candidate set because the cohort is initially much larger than the set size. Such a
word must wait until #s competiteors are ehiminated before gainmmg entry to the
set. A word making 2 late entry will not have the same level of activation it would
have had had it entered the candidate set at the eartiest possibic moment and
been able to start building up activation. 1t then has to straggle with words which
may now have a lower bottoni-up score but which entered the set earhier and had
more time o build up activaticn. A word making 2 late entry into the candidate
set will therefore be recognised later than if it was ncluded in the set from its
onset.

One way to overcome this disadvantage that some words will suffer from is to
make a single entry in the candidate set represent alf words starting with the same
string of phonemes. If the lexical search produces a large number of words which
are identical up uatit the current phoneme then this sef of words can be replaced
a5 | .
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gets bottom-up input and fights with other candidates just like any single word
candidate. However, when new input arrives which fits one member of the cohort
better than others, this word inherits the activation iovel of the cohort marker.
This best fitting candidate then behaves as though it had been in the candidate set
right from the earliest point. Nofe thai we might need seversl cohort markers in a
single candidate set. As successive phonemes are presented they will deviate from
some of the words represented by the #irst cohort marker. That s, not all words
represented by the cohort marker will share the same initial cohort right up o the
current input. At this point we will have to sphit the cohort marker. So, if the
input s [kead/, we might have ome marker for /kand..../, another for
fkaens. .../ and so forth. When a cohort marker gets split up, one of the new
markers will necessarily have less bottom up evidence than another. o the lowest
scoring marker can be dropped from the candidate set i there is insufficiont
space. Note that unless there 15 a nusanalysis of the input. the correct word will
always be represented by the highest scoring cohort marker and will therefore
inherit the maximum amount of activation, The cohort-marker scheme has been
implemented as an option in the present model and works well in overcoming the
disadvantage of words in large word-initial coborts. However, the cohort-marker
option was not used in anv of the simulations reported here.

Tl ~oboart ok
] Jtaiact



2. Norvis [ Cogridon 52 (1994) 189234 225

Thus, although at first glance it appears that a network with oniy a small
number of candidates per segment will have trouble processing karge word initial
cohorts, this 15 only a problem if all potential candidates have 1o be considered
explicitly. if ail of the words in a cohort can be represented by a single cohort
marker then the candidate set can siill be kept very small and this will have no
disadvantages in terms of how guickly words can be recognised.

I8. Lexieal representations

The carrent model uses input that takes the form of a phonological representa-
ticn of the input stream. Clearly the model could be modified 10 use featural or
svllabic representations, or even to work from whole-word spectral templates.
However, whatever form the input to the model fakes, there must be an explicit
form-based lexical representation of words expressed in the same vocabulary. The
form-based representation is essential for the working of the model because the
competitton mechanism depends crucialiy on being able to align lexical candidates
with the input. Each candidate has to know which section of the input it needs o
stake a claim to. TRACE also has form-based representations to support the
compelition mechamsm, although 1n TRACE these representations are implicit in
the connections between the phoneme and lexical layers rather than being
expiicitly stored as part of a phonological representation in the lexicon.

This contrasts with the original recurrent nerwork model which was simply a
classification system. The recurrent network could produce a best guess as to what
word was in the input, but it bad no idea where the word began or ended. In this
respect the recurrent network is rather like the logogen model {Morton, 1969).
The network produces a response whenever it eacounters a word but provides no
mformation about the extent of the word in the input. A classification-only system
might be perfectly adeguate for phoneme recognition because phonemes never
contamr other phonemes as their constituents, But because words can contain
other words as constituents, any effective word recognition system: must be able to
bind candidates 10 specific parts of the input stream.

in the majority of connectionist learning systems, such as those using back
propagation, networks are simply trained to pastition the input space, This means
that such networks learn only as much as they need to in order to differeatiate
between the words they have been trained on. If a word can be recognised on the
basis of its first few phonemes then the network may simply ignore the identity of
subsequesnt phonemes. As a conseqguence, learning a new word ¢an sometimes
involve reledrning a large part of the existing lexicon. This is because the network
never really fearns about the form of the words in the lexicon, it just learns how
10 tell them apart, and that ability may need to be based on completely new
information if new words are added to the lexicon. For example, if a word has few
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lexical neighbours it might be possible to identify it on the basis of a very
superficial analysis of the input. I the lexicon grows, and the word acquires
several close necighbours, a completely new analysis procedure wili now be
reguired to differgntiate the word from #s new neighbours, However, i the word
recognition system begins by learning a form-based representation {(say a
phonemic representation) which ¢aptures all of the phonemic distinctions in the
language then the basic representations and analysss procedures will never need to
change because of changes or increases in vocabulary. A further problem faced by
networks that perform classification without reference to form-based representa-
tfions ts that they will be unable to delect errors in pronunciation, Although such
networks can recognise words that are slightly mispronounced, unlike human
listeners, they have no way of knowing how the mispronunciation deviates from
the target word, They simply do not have a representation of the expected word
form against which they can compare the mput. Misproaunciations simply reduce
the overail activation level for the word. These networks have no way of
determining what causes the activation level to be lower than normal.

The fact that TRACE does have Implicit representations of word {form in the
connections between words and phonemes helps if fo solve the right context
probiem, but TRACE will also suffer from problems in detecting mispronuncia-
tions unless it is somehow possible to interrogate the pattern of connections to
determine which phonemes should be active for a particular word, The pattern of
phoneme activations will indicate which phonemes are present, but not which
phonemes should be present. So TRACE must also incorporate an exphcit
representation of word form. At the very least the information which 15 implicit in
the connections taust be made explicit by providing a mechanism which can
mterrogate the top-down connections and compare that with the bottom-up input,
In the current model a representation of word form is essential to align candidates
up with the wput. A recurren! actwork wili generafe candhdate words, but a
form-based representation must be consulted to discover where the words begin
and end in the input. In order to work at all, Shortlist must have access to the
kind of form-based represestations required for mispronunciation detection. In
TRACE., misprosunciation detection depends on making phonemic representa-
tions explicit. But, once these representations are made avatlable for the purposes
of misproaunciation detection, they could also be made available for other tasks
like phoneme identification itself. If TRACE could identify phonemes on the
basis of lexical representations then it would have incorporated the race model.

9. Context and reiation to checking model

The present model operates by identifying a candidare set of words before
sufficient bottom-up information is available to identify the input uniquely. This 18
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exactly the form of the perceptual system required by the checking model (Norris,
1986} to account for context effects in word recognition. In the checking modeti all
context effects take place between the point at which a perceptually derived
candidate set of words is produced and the point at which the combination of
perceptual and contextual information leads a singie lexical candidate to exceed
the recognition threshold. Candidates generated by the perceptual analysis are
checked to evaluate their plausibility in the current context., Recognition thres-
holds are increased for implausible words and decreased for more plausible
words. In the current model we can think of the checking process as increasing
the activation of piausible candidates and decreasing it for implausibie candidates.
fn normal discourse, where only a small proportion of the words are highly
predictable from the context, we would expect most ol the valuable work to be
performed by the inhibitory cffects of reducing the activation Jevels of tess
plausible candidates. When implausible words huave their activation Jevels redeced
the more plausible candidates will suffer less from competitive inhibition and will
therefore be recognised more rapidly, Contextual inhibition should therefore be
scen as having a healthy, {acihitatory effect on recognition of any words which are
not implassibie in their context,

20. Parameter sensitivity

Whenever a model has « large number of parameters we need to know how
sensitive the behaviour of the model is to small changes in those parameters. We
have already investigated the mismatch parameter and seen that it can be varied
over a wide range without greatly altering the behaviour of the model. The same
seems 1o be true of all parameters other than inhibition. Small changes in the
valug of the word-te-word inhibition can produce quite large changes in the
maodel’s behaviour,

One of the main effects of inhibition is to alter the bias against long words.
Long words are at a disadvantage relative to short words because they will
overlap with more competitors. Each of those competitors is a source of
inhibition. So. in the catalog example in Fig. 3 catalog has a lower activation than
cat after the /t/ despite the fact that both words have the same amount of
bottom-up activation. Buot, with 100 much inhibition long words can actually
become difficult to recognise. Too much inhibition can also act to give carly
decistons excessive momentumi. Once 2 candidate becomes highly activated it can
suppress all competition. Later coniext is then totally unable to buiid up the
activation of competing candidates and alter earlier decisions.

Of course, if the tevel of inhibition is set too low, spurious competitors do not
have their activation suppressed and the network is unable 1o do its job of
producing an unambiguous parsing of the input. For example, with inhibition set
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at .08 ship and shipping are both sirongly activated in the ship inguiry example,
With inhibition at 0.15 shipping is never activated above ship.

S0, while we want to employ as mach ishibition as possible 10 make the
network produce clean, uasambiguous outpul, this can have the undesirable side
effect of making the network insensitive o right-context, and it was the need to
give an account of right-context effects that provided the initial motivation for the
model.

Perhaps we should just be grateful that there is a small range of settings of the
nhibition parameter that does lead to satisfactory performance with a wide range
of different inputs. However, it is possibie 10 make a small modification to the
model so that it continues to perform seasibly even with very large settings of the
inkibision parameter. The ceatral problem with using large amounts of inhibition
is that candidates that develop a high level of activation carly on suppress all
competitors, even competitors that shouid ultmately win ouf, A simple way to
overcome this is 1o resel the network ai regular intervais. In elfect this depnves
the network of its memory and allows it 1o settle into a new and oplmal
wterpretation of the input. The resetting operation could be performed after a
fixed number of ¢yeles of the network, or could possibly be synchronised with the
arrival of each new phoneme. In either case, following the reset all candidates
start again on an even footing. Under this regime long words will still suffer an
initial disadvantage relative to short words bit, as soon as a long word gets more
bottom-up support than a short word, it will win out becanse the short word will
no fonger be starting from the higher level of activation carried over from carlier
praocessing. Such a change gencrally makes very little difference to the behaviour
of the model unti the inhibition is ser kigh. With activation reset at intervals, high
levels of ishibition no longer prevent the recognition of long words or dimimsh
the influence of right-context.

Two recent sindies provide strong empirical support for the idea of resetting
activation and also show how Shortlist can be extended to incorporate the
Metrical Segmentation Stratepgy of Cutler and Norris {1988). Norris, McQueen,
and Cutler {submitted} and Vroomen and de Gelder (submitted) investigated the
relationship between the Metnical Segmentation Strategy and lexical competition.
Cutler and Norris had used a word spotting task to show that identification of
CVCC waords like aring is harder when they are embedded in a strong-strong
CVCCVC nonsense word like /minteif/ than ip a strong-weak nonsense word
like /mintaf/. According to the Metrical Segmentation Strategy this s because
mint in fmuntef/ s segmented at the start of the strong syllable. Identification of
mint therefore involves combining information across a strong syilable ¢nset. In
the strong—weak string /mmtaf/ there is no such segmentation and identification
of the target is easier,

Norris, McQueen and Cutler showed that the effect of metrical segmentation
{the difference between strong-strong and strong—weak strings) is modulated by
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lexical competition and only emerges when there is a farge number of competing
lexical candidates beginning with the /t/ of the second strong syliable. Vicomen

number of competitors beginning at the /t/the weaker the activation of the target
word,

Both of these studies model their data nsing a version of Shortlist modified to
mcorporate the Metrical Segmentation Strategy of Cutler and Norris (1988). In
this version of Shortlist the scoring procedure for the lexical match is modified to
refleet the relationship between the lexical representation of the candidate and the
metrical structure of the mput. Candidates starting at a strong syliable onset are
given a boost if they themselves have a strong onset. If there is a strong syllable
onset i the input and the candidate is not iexically marked as having a strong
onset at that point then the bottom-up score is reduced. So, minr has its score
reduced in /minteif/ because /t/ 1s the onsct of a strong syllable whereas in the
lexical representation of mine the /t/ wili not be marked as being a strong onset,

Without the reset the sumber of competitors has a negligible effect on
recogmtion of the target word. At the final phoneme the target word generally
has such a high level of activation that potential competitors are strongly inhibited
and fail to have any impact of the activation of minr itself. However, when using
the reset these word final competitors do have an effect on the activation of the
target word. Even after the end of the target word the reset ensuves that the
target and its competitors all start from zero activation, The competitors can
therefore influence the target before becoming ishibited themselves. This s
particularly so whesn the target word has its bottom-up activation reduced by the
Metrical Segmentation Strategy. Shortlist can therefore successfully simulate this
interaction between segmentation and iexical competition, but this does depend
crucially on resetting the activation after cach phoneme. Norris, McQueen and
Cutler show that the modified version of Shortlist retains its basic character and
gives an improved simulation of the data from McQueen, Norris, and Cutler (in
pressi.

21. Conclusion

The lack of architectural elegance in TRACE is largely due to the fact that, in
order 10 achieve time invariance, the basic lexical network has to be duplicated
many times. Fach lexical network then has to be interconnected with inhibitory
links. In contrast, the recurrent network can perform time-invariant recognifion
using a single lexical network with & simple and elegant architecture. A recurrent
network of this form works perfectly well when recognising isolated words, Even
if the network begins by making the wrong decision, the decision it makes at the
cnd of the word is usually the correct one. However, in continwous speech, any
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decisions the network makes may have to be revised in the light of subsequent
context. There is no independent way of determining when a word has ended so
we cannot simply wait and read the output of the network only at word endings.
But, with only 2 single set of lexical output nodes, the recurrent network has no
continuing representation of earlier decisions. Onee o decision 8 made 1t cannot
be altered. If the only failing of the recurrest network were that it failed to
maintain a record of its decisions, this could be remedied by keeping copies of the
activation of the output nodes. However, the system needs to be able to compare
the merits of lexical hypotheses generated at different times. This comparison
depends on knowing which phonemes in the input generate support for each of
the fexical candidates, This in turn depends on having a form based representa-
tion of words.

I{ we attempt both to generate lexical candidates and to perform lexical
competition in the same network it is impossible to avoid duplicating the entire
texical network in the way that TRACE does. Each time-slice of the competition
system has to be capable of recognising every word in the lexicon. However, by
separating the process of generating lexical candidates from the competition
process, we can dramatically reduce the scale of the competition problem. The
lexical competition network nced only consider a small short-list of candidates
generated by a bottom-up lexical access system. This leads to an enormous saving
in the number of mhibitory connections required between lexical candidates.

The main aim of the pr{:qent enterprise was to produce a model that would

31 wadarma tha st eveaeaeds e A Faoasls TR A LS Te1d 1 L, ks gt T «1
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within the framework of a modular, bottom-up system. Because of 2%1(: desire to
build a model that could operate with a large lexicon we have had to sacrifice the
abiiity to learn in favour of a sizable vocabulary. Nevertheless, the model has
successiully demonstrated that the basic architeciural principies are sound. The
made! capes with a large vocabulary and the probiems of revising decisions in the
light of following context in a completely bottom-up system that only ever has 0
consider a small number of lexical candidates at each possible starting segment.
With an unambigucus phonemic input the model was shown to work well with as
few as two candidates per segment. While TRACE considers the eatire lexicon as
candidates, this model need only consider a small froction of the lexicon as
candidates at any one time. Indeed, because of phonotactic constrammls, some
segrients may not have any candidates at alf.

As the size of the Iexicon is increased the task of finding & unique interpretation
of a given input siring obviously becomes harder. With a large lexicon there wili
be more embedded words and a greater potenfial for spurious lexical matches.
However, this model continues to perform well when tested with a vocabulary of
6000 words and, as already mentioned, 1t continues to perform well even with a
26 000-word dictionary, Note that with a vocabulary of 26030 words TRACE
would effectively be considering all 26 008 words as candidates at 2l points!
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Increasing the size of the vocabulary is one way of increasing the number of
candidates that the model geacrates at each position. Another is by deliberately
degrading the input by using mid-class transcriptions. Simulations using mid-class
transcriptions once again showed the model to be very robust. Even replacing
either the first or last phoneme word with a mid-class transcription resclted in ess
than & 9% decrease in the final activation fevel of the target word while still not
allowing the average activation level of the nearcst competitor to rise much above
zero.

One of the central motivations behind the model was to overcome the problem
of handiing right-context faced by the recurrent network. In accord with this goal
it was shown that the model could cope readily with input where local ambiguities
temporarily lead the analvsis up the garden path. The ship inguiry example
demonstrates how the model can make use of context which does not become
available untif welf after a word has ended. But, most importantly, ali of this can
be achieved using a very large lexicon, no top-down interaction, and as few as two
lexical candidates per segment. However, the advantages of the Shortlist modei
are net just restricted to providing a more efficient and plausible architecture thap
TRACT. Shortlist also provides a better account of the data. Studies by Cutler et
al. (19873, Eimas et al. (1990), Frauenfelder et al. (1990) and McQueen (1991a)
all calf into question the emphasis on top-down interaction that is such a central
feature of TRACE. Instcad, these studies all support a bottom-up autonomous
modetl like Shortlist which embodies the basic architectural principles of the race
model.
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Appendix: model parameters

The model uses the interactive activation algorithm described in McClelland
atd Rumethart {1981). Given that the model uses a network with only a single
layer it has only the following 8 parameters. The parameters representing
minirmnum and maximum activation simply scale the range of activation levels and
are therefore not free model parameters in the sense that they have no effect on
the pattern of behaviour exhibited by the model.

minimun word activation: 0.3

maximum word activation: 1.0

word-to-word inhibition: (.12

bottom-up phoneme-to-word excitation: 0.03
decay: 0.3

score for a mid-class maich: 0.7 of the maich score
score for a mismatch: —3.0 times the match score
number of Herations through net per segment: 15



