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Abstract 

Previous work has shown how a back-propagation network with recurrent 
connections can successfully model many aspects of human spoken word recogni- 
tion (Norris, 1988, 1990, 1992, 1993). However, such networks are unable to revise 
their decisions in the light of subsequent context. TRACE (McClelland & Elman, 
1986), on the other hand, manages to deal appropriately with following context, but 
only by using a highly implausible architecture that fails to account for some 
important experimental results. A new model is presented which displays the more 
desirable properties of each of these models. In contrast to TRACE the new model 
is entirely bottom-up and can readily perform simulations with vocabularies of tens 
of thousands of words. 

1. Introduction 

In contrast to written language, speech is an inherently temporal signal. In the 
case of written language all of the letters in a word are available for processing 
simultaneously. In speech, the information in a word must necessarily arrive 
sequentially. The location of the boundaries of written words is greatly facilitated 
by the presence of white spaces between words. In speech there tend to be few 
reliable cues to word boundaries. But, despite the very different nature of the 
problems involved in recognising written and spoken language, most psychologi- 
cal theories of word recognition have tended to adopt the convenient fiction that 
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speech is just written language with phonemes instead of letters. However, in the 
last fifteen years models have emerged which have begun to pay attention to the 
distinctive character of spoken language. In particular, Marlsen-Wilson and his 
colleagues (Marlsen-Wilson, 1987; Marlsen-Wilson & Welsh, 1978) have de- 
veloped the Cohort model with its emphasis on the “left-to-right” nature of 
speech recognition and on how the process of recognition unfolds over time. In 
the TRACE model McClelland and Elman (Elman & McClelland, 1986; McClel- 
land & Elman, 1986) have extended this concern with the temporal dynamics of 
spoken word recognition. Additionally, TRACE provides a solution to the 
problem of segmenting the continuous speech stream into words. Indeed, 
TRACE is sometimes thought of as a computational implementation of some of 
the ideas first expressed in the Cohort model. 

In recent years TRACE has become the most widely applied model of human 
spoken word recognition. The success of TRACE as a psychological model is 
probably attributable to two main factors. First, TRACE is very broad in its 
coverage. It successfully simulates a broad spectrum of psychological data ranging 
from compensation for coarticulation to data on word recognition points. Second, 
TRACE is computationally explicit. There is no room for debate as to the 
predictions TRACE makes. The code for TRACE has been widely distributed 
and other researchers (e.g., Frauenfelder & Peeters, 1990) have been able to 
make extensive use of TRACE simulations in their own work. 

However, despite its success, TRACE has not gone unchallenged. Some of the 
central theoretical assumptions of TRACE have aroused considerable con- 
troversy. TRACE is an expression of a highly interactive view of spoken word 
recognition in which there is a continuous two-way flow of information between 
lexical and phonemic processing. This interactionist view has received a strong 
challenge from bottom-up theories in which the processes involved in phoneme 
recognition are completely autonomous and receive no top-down feedback from 
lexical analysis (Cutler, Mehler, Norris, & Segui, 1987; Massaro, 1989). In the 
last few years a number of studies have produced results which favour the 
autonomous view over the interactionist standpoint represented by TRACE 
(Burton, Baum, & Blumstein, 1989; Burton, & Blumstein, MS; Cutler et al.. 
1987; Frauenfelder, Segui, & Dijkstra, 1990; McQueen, 1991a). 

An additional problem for TRACE is that it employs an architecture of rather 
questionable plausibility. In TRACE the problem of time-invariant recognition is 
solved by duplicating the entire lexical network many times. A theory which could 
avoid the need to duplicate lexical networks would represent a considerable 
advance over TRACE. 

The present paper develops a new model of spoken word recognition which 
addresses these two central deficiencies of TRACE. Consistent with the empirical 
data, the model is entirely bottom-up in its operation. In many respects the model 
can be considered to be an implementation of the bottom-up race model of Cutler 
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and Norris (1979). The model also addresses the problem of the plausibility of the 
TRACE architecture. Like TRACE, the Shortlist model relies on competition 
between lexical candidates tied to specific locations in the input. However, in 
Shortlist the competition takes place within a small, dynamically generated 
network which only ever considers a handful of lexical candidates at any one time. 
The structure of the model enables it to perform simulations using realistically 
sized vocabularies. Simulations are presented which show that the model 
performs well with large vocabularies even when the input is degraded or 
potentially ambiguous. A bottom-up architecture is no barrier to efficient 
performance. In word recognition, top-down feedback from the word to the 
phoneme level is redundant because all of the crucial lexical constraints can 
operate entirely within the lexical level itself. 

2. The data 

Cutler et al. (1987) reported two findings which require revisions of TRACE. 
First, they found that phoneme monitoring latencies to word-initial phonemes 
were faster than to phonemes beginning non-words. McClelland and Elman 
(1986) argued that effects of lexical status should not manifest themselves on 
word initial phonemes because the lexical activation will not have had time to 
build up sufficiently to feed back down to the phoneme level. Second, Cutler et 
al. showed that the effect of lexical status was dependent on the composition of 
the stimuli. Effects of lexical status emerged only in lists where the items varied in 
number of syllables. In lists of monosyllables the effects disappeared. Cutler et al. 
interpreted their results in terms of a race model (Cutler & Norris, 1979) in which 
attention could be shifted from a phonemic to a lexical analysis. They suggested 
that the monotony of the monosyllabic lists led subjects to attend primarily to a 
phonemic analysis of the input, whereas in the more varied lists they attended 
more to the results of a lexical analysis. An attentional explanation of this kind 
fits in well with a race model where there are two sources of information about 
phoneme identity. Attention can be shifted between the phonemic level and the 
lexical level. However, in TRACE there is only a single source of phoneme 
identity information. Phonemes can only be recognised by reading out in- 
formation from the phoneme nodes. To accommodate these results TRACE 
would need to be modified so that all of the top-down word-phoneme connections 
could be altered to produce more top-down activation in the more varied lists. 
Such a move would account for the data but would be harder to motivate than the 
attentional explanation offered by Cutler et al. 

Frauenfelder, Segui, and Dijkstra (1990) also used the phoneme monitoring 
task to examine the predictions of TRACE. They measured monitoring latencies 
to phonemes occurring after the uniqueness point of a word. In some instances 
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the target phoneme was altered to form a nonword; for example, the /I/ in 
vocabuluire was altered to a It/ forming vocabucuire. Reaction times to the It/ in 
vocubutuire were compared to reaction times to the it/ in the control nonword 
socabutuire. According to TRACE, top-down feedback from the lexical node 
corresponding to vocubuluire should inhibit identification of the iti in vocubutuire 
but not in socubutuire where there should be only minimal lexical activation. 
However, although Frauenfelder et al. found facilitatory lexical effects in the 
word conditions in their study, they found no evidence of the predicted inhibition. 
This absence of inhibition is, however, exactly what is predicted by an autonom- 
ous theory such as the race model of Cutler and Norris (1979) in which there is no 
top-down influence of lexical information on phoneme identification. According 
to Cutler and Norris, phoneme identification is a race between a phonemic route 
and a lexical route in which the phonological representation of a word is accessed 
from the lexicon. The lexical and phonemic routes are completely independent 
and responses are determined by a first-past-the-post race. If the phonemic route 
wins the race, then lexical information will have no influence on the outcome. So, 
identification of the ill in vocubuluire will be faster than in the non-word 
socubufuire because words benefit from the operation of the faster lexical route. 
However, the It/s in socubutuire and vocubutaire will be identified equally quickly 
because both will be identified by means of the phonemic route. 

Concerns over the importance of top-down feedback have also been raised by 
recent studies by Burton et al. (1989), Burton and Blumstein (MS), and by 
McQueen (1991a). These studies suggest that top-down effects of lexical in- 
formation on phoneme identification may be far less pervasive than a highly 
interactive model like TRACE would suggest. Top-down effects may well be 
dependent on the quality of the stimulus and may only emerge when the stimulus 
is degraded in some way. either by low pass filtering or by the removal of 
phonetic cues. Even then, the effects do not appear to be consistent (for a review 
of lexical effects on phonetic categorisation see Pitt & Samuel, 1993). The study 
by McQueen investigated the effects of lexical information on the categorisation 
of word final fricatives. According to TRACE, the top-down effects of lexical 
activation on phoneme perception should be at their strongest in word-final 
position. Subjects in McQueen’s study heard stimuli in which the final fricative 
varied on a continuum between Is/ and ISi. TRACE predicts that subjects 
hearing stimuli on a ifrsi - /frJ/ continuum should show a shift in their 
categorisation function such that ambiguous stimuli are more likely to be 
identified as isi. The top-down activation from fish should bias the perception of 
the ambiguous phoneme. This bias should be present even for stimuli presented 
under good listening conditions. However, the predicted lexical bias was only 
present when the stimuli were low-pass filtered at 3000 Hz. Furthermore, the 
lexical bias was most apparent in the case of the fastest responses. McQueen 
argues that this pattern of results is contrary to the predictions of TRACE but in 
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line with the race model of Cutler and Norris. In TRACE, lexical bias should be 
dependent on the activation of the lexical node. Lexical activation should grow 
over time. Therefore later responses should show a greater lexical bias because 
there will be more top-down feedback. According to the race model, lexical 
effects will be most apparent where the lexical route tends to be faster than the 
phonological route. Lexical effects should therefore be largest in the fastest 
responses. 

The common thrust of the empirical evidence against TRACE is a concern that 
McClelland and Elman may have placed too much emphasis on the importance of 
top-down information. Certainly, lexical information may influence phoneme 
monitoring and categorisation responses under some circumstances but there is 
very little evidence to suggest that this is mediated by an interaction between 
lexical and phonemic information of the form incorporated in TRACE. The 
strongest support for the interactive view comes from a study of compensation for 
coarticulation by Elman and McClelland (1988). Elman and McClelland pointed 
out that, within TRACE, activation of a phoneme node caused by top-down 
information will be indistinguishable from activation caused by bottom-up 
perceptual information. In compensation for coarticulation (Mann & Repp, 1981; 
Repp & Mann, 19Sl), the interpretation of one phoneme is biased by the nature 
of the preceding phoneme. There is universal agreement that this phenomenon 
must operate at the phoneme level and not the lexical level. So, if the 
interpretation of the preceding phoneme itself could be influenced by top-down 
evidence, TRACE has to predict that the preceding phoneme would behave 
exactly as if it had been activated by perceptual evidence. Therefore, there should 
still be compensation for co-articulation regardless of whether the evidence for 
the phoneme is bottom-up or top-down. This is what Elman and McClelland 
found. However, according to a bottom-up model, lexical information could not 
possibly feed back down to the phoneme level. A lexically induced bias should 
never be able to alter the low-level interpretation of a phoneme so as to influence 
the compensation for coarticulation effect. 

However, as McQueen (1991b) has shown, the lexical effects in this study are 
critically dependent on using slightly degraded stimuli. According to TRACE 
such effects should be present even with undegraded input. Also, Norris (1992, 
1993) has successfully simulated Elman and McClelland’s results using a back- 
propagation network in which there are no top-down connections at all. Indeed, 
in the network used in one of the simulations presented by Norris there are not 
even any word nodes. So, there is still little evidence in favour of the kind of 
top-down interaction embodied in TRACE. 

The alternative view, exemplified by the race model of Cutler and Norris, is 
that behaviour which appears to be interactive is due to the fact that phonemic 
information can be derived from two sources. Phonemes can be identified either 
by a direct phonological analysis of the input, or by accessing the word’s 
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phonological representation in the lexicon. In TRACE. of course, there is only 
one source of phonological information, the activation of the phoneme nodes 
themselves. There are no lexical entries containing phonological representations, 
so lexical effects on phoneme identification can only be explained by top-down 
interaction. 

It is worth emphasizing at this point that, despite the substantial differences in 
the theoretical claims underlying TRACE and the race model, the two theories 
have proved very difficult to tease apart. By and large, both theories can account 
for the same set of phenomena. For example, in the Ganong effect (Ganong, 
1980) which forms the basis of the studies by Elman and McClelland and by 
McQueen, the interpretation of an ambiguous phoneme in a string which is 
ambiguous between a word and a non-word is biased so as to make subjects more 
likely to identify the phoneme so as to form a word than a non-word. In Ganong’s 
original experiment subjects heard sequences beginning with a phoneme on a 
continuum between ItI and ldi. One end of the continuum was a word, the other 
a non-word. Subjects were more likely to identify ambiguous phonemes in the 
middle of the continuum as being consistent with the word interpretation than the 
non-word. For example, on hearing the midpoint of the continuum “type” - 
“dipe” subjects were more likely to identify the ambiguous phoneme as it/ than 

id/. According to TRACE, this result is due to the top-down activation from the 
partially activated word node altering the activation of the phoneme node for it/. 
According to a race view this result is due to subjects reading out phonological 
information from the lexical representation of “type” when there is inadequate 
bottom-up evidence to identify the phoneme clearly. So, although the Ganong 
effect appears to be due to top-down interaction it can equally well be explained 
in terms of a race between lexical and phonemic processing. 

Although the basic effect of lexical information on phonetic categorisation can 
be explained be either bottom-up or top-down theories, we have seen that 
TRACE and the race model do make predictions which differ in important 
respects. The detailed pattern of results observed by Cutler et al., Frauenfelder et 
al. and McQueen tend to tip the balance in favour of the race model. Currently, 
the strongest evidence in support of TRACE comes from the study by Elman and 
McClelland. However, as has already been mentioned, even this result can be 
simulated using a recurrent network with no top-down lexical feedback. 

3. Time-shift invariance 

Although the empirical findings clearly pose problems for TRACE, the most 
worrying aspect of TRACE is the implausibility of its architecture. In order to 
demonstrate time-shift invariance, that is to be able to recognise words no matter 
when in time they begin, TRACE has to employ multiple copies of the basic 
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lexical network. TRACE needs one copy of the network aligned with each point 
in time where a word might begin. The basic architecture of TRACE was 
inherited from the interactive activation model of visual word recognition 
(McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982). The original 
interactive activation model employed position specific letter detectors. That is, 
there had to be separate letter nodes for an “A” in word initial position and for 
an “A” in second position. The model could only deal with four-letter words and 
therefore had four separate sets of position specific letter nodes. If a word was 
presented to the network misaligned so that its first letter appeared in slot two, it 
could not possibly be recognised, because a letter in position two is treated as a 
completely different object from the same letter in position one. In the case of 
visual word recognition, position-specific letter nodes might be considered to have 
some degree of plausibility. Written words are usually bounded by white space. So 
it might be possible to line input words up relative to the space. The first word 
after the space is position one, the second is position two, and so forth. Preceding 
the network with a special alignment process would at least allow it to work. 
However, the plausibility of the model would still be open to question. But the 
case of speech is rather different from that of visual word recognition. There are 
not usually any reliable cues to word onsets. Words can begin at almost any point 
in the input, so it would be impossible to construct a reliable alignment process to 
line the network up with word onsets. 

To overcome this problem TRACE duplicates the basic word recognition 
network so that there is a complete lexical network starting at each point where a 
word might begin. If an utterance has 50 phonemes then TRACE would need 50 
lexical networks to process it. Word nodes within these networks are then 
connected via inhibitory links to ensure that only a single word is recognised in 
any given stretch of the input. Apart from the problem that this brute force 
solution lacks subtlety and aesthetic appeal, it also faces another difficulty. Simply 
duplicating lexical networks is not a general solution to the time invariance 
problem. If we want to build a system that will recognise any word in an utterance 
5 seconds long we could build an array of SO or so lexical networks, one for each 
phoneme (potential word onset) in the utterance. But there clearly has to be 
some limit on the number of lexical networks that we can use and this would place 
a limit on the length of utterance we could listen to. 

A slightly better solution might be to connect the networks together in a ring 
with a length determined by memory span. The input would simply be cycled 
round successive networks in the ring. So long as activation decayed before each 
section of the ring had to be reused, such a system would be able to deal with 
utterances of unlimited length. 

However, we are still left with the awkward feature of duplicated lexical 
networks. Is it possible to achieve the same results as TRACE with only a single 
network? One way to perform time-invariant recognition is to use back-propaga- 
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tion networks with time-delayed connections. Norris (1988, 1990. 1993) has 
shown how a very simple network architecture can perform time-invariant word 
recognition using a single network. Other architectures with time-delayed and 
recurrent connections are now in common use as phoneme recognisers (e.g., 
Robinson & Fallside, 1988; Waibel, Hanazawa, Hinton, Shikano, & Lang, 1988; 
Watrous, Shastri, & Waibel, 1987) in automatic speech recognition systems. The 
network used by Norris is shown in Fig. 1. The networks in Fig. l(a) and (b) are 
functionally equivalent. However, the representation in Fig. l(b) emphasises the 
network’s heritage from a network originally proposed for production of se- 
quences by Jordan (1986).’ 

The network has a single set of input nodes corresponding to a featural 
description of the input phonemes, and a single set of output nodes, one for each 
word in the network’s vocabulary. The input to this network consists of a featural 
representation of the phonemes. The features of successive phonemes are 
presented to the same set of input nodes in sequence. Throughout the presenta- 

Figure 1. Two ultemative representations of a simple recurrent network. In (a) there are time-delayed 
weights interconnecting all of the hidden units. In (6) the hidden unit activations ure shown 
as being copied to a set of state units which we, in turn, connected to all hidden units. Links 
marked “x7’ have a delay of one time unit (not all connections shown). 

‘See Norris (1990) for a comparison of the production and recognition architectures. 



D. Norris I Cognition -52 (1994) lXY-234 197 

tion of each word the network is trained to activate a single output node which 
identifies the word, and all other output nodes are set to zero. The delayed 
connections in the network ensure that at each point the hidden unit activation 
generated by the previous input is fed back to the hidden units. So, at all times, 
the hidden units have access to information about their state on the previous time 
cycle. The state on the previous cycle was itself determined by the state on the 
cycle before that. The delayed connections therefore provide the network with a 
memory for its prior actions and enable it to integrate information across time. 
Therefore, no matter when in time a word begins, the network will be able to 
build up the same internal representation of the word and the word will be 
recognised. 

A simple network like this does a remarkably good job at simulating the kind of 
data that is often cited in support of the Cohort model (Marslen-Wilson, 1980, 
1984; Marslen-Wilson & Welsh, 1978; Marslen-Wilson & Zwitserlood, 1989). It 
will recognise words at the earliest point where they become unique. Before a 
word becomes unique it will activate all members of the cohort. Words cease to 
become activated as soon as inconsistent input is received. This kind of 
architecture is also good at accommodating variations in the rate of input. A 
network trained to recognise patterns presented at two different rates generalises 
very well to instances of the same patterns presented at a different rate (Norris, 
1990). An interactive activation network has no means of performing such 
“time-warping” or generalisation across presentation rates. 

However, although this network has many desirable properties, it does have 
one rather serious deficiency which, in fact, is a direct consequence of the decision 
to use a lexical network with a single set of output nodes. The output of the 
network at any time effectively represents the network’s best bet as to which word 
is in the input at one particular point in time. Consider what happens if the 
network receives an input such as catalog. When the network processes the It / it 
might activate cut while still having little or no activation for catalog. By the end 
of the word catalog should be activated and there should no longer be any 
activation for cut. Anyone transcribing the output of the network would therefore 
simply see two output nodes activated in succession, one corresponding to cut and 
the other to catalog.’ The input cutlog will also activate two words; cut and log. 
Without access to a phonological description of the words there would be no way 
of knowing that cut is just a spurious transient response to the initial phonemes of 
the word catalog in the first case, but a correct identification in the second case. 
The only way to know that cut should be ignored is to be able to examine the 
phonological representations of both cut and catalog and to realise that cut begins 
with the same three phonemes as catalog. Without access to phonological 
representations, /ka?talDg/ and ikaetlogi will both be transcribed as containing 

’ log will tend to be inhibited by the activation of catalog 
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two words. Because the network has only a single set of output units it can only 
indicate its current interpretation of the input. It has no way of going back in time 
to revise earlier decisions which need to be altered in the light of following 
context. It cannot represent both the initial response corresponding to the 
network’s best guess based on evidence available at one time, and revised output 
based on following context. 

We could make the network delay its decisions until more context was 
available, but then it would no longer correctly simulate data showing that words 
can be recognised almost as soon as they become unique (Marslen-Wilson, 1980, 
1984). Note that simply extending the network to have extra outputs representing 
the network’s past history of decisions does not provide a general solution to the 
problem. It might appear that the network could learn to inhibit cut whenever 
catalog is recognised. However, every time a new embedded word such as cut is 
learned the network would have to be retrained with all words in which it is 
embedded. Also, if catalog is misperceived as cudulog, catalog may be successful- 
ly recognised, but the network would also recognise cad as it would not have been 
trained on the relation between cud and catalog. 

A general solution to this problem of how to deal with “right-context” requires 
that evidence from a particular part of the input can only be used to support a 
single word. If ikztl is being taken as evidence for catalog then it can not also be 
taken as evidence for cut. Alternative lexical hypotheses like cut and catalog need 
to compete with each other for the available perceptual evidence to ensure that 
only the best fitting candidate wins through. This is exactly what the lexical level 
of TRACE does. Word nodes in TRACE compete by means of the inhibitory 
connections within the word level. Words receiving support from the same input 
phonemes inhibit each other so that the network’s final interpretation of the input 
is unlikely to contain two words that receive input from the same phoneme. 
However, TRACE effectively considers all words in the lexicon to be active 
lexical hypotheses all of the time. Every word in the lexicon is in constant 
competition with every other word in the lexicon. In fact each word is in 
competition not only with a complete set of all possible words beginning at the 
same point in the input, but also with nodes for any words beginning at other 
positions which would share overlapping input phonemes. For example, in a 
50 000 word lexicon in which all words were six phonemes in length, TRACE 
would need a minimum of 550000 word nodes to process a word in continuous 
speech..’ As TRACE requires bidirectional inhibitory links between every pair of 

’ The word node corresponding to the onset of a h-phoneme word has to be connected to all other 
words in the same segment, to word nodes in all of the previous 5 segment positions, because all of 
these words overlap. and to word nodes in the 5 other segment positions in the remainder of the word. 
This makes a total of 11 *50000 - I other word nodes that a candidate word node in the middle of 
continuous speech needs to be connected to. Every pair of nodes corresponding to overlapping words 
then needs to be connected together. 
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nodes corresponding to overlapping words, the lexical level alone of this network 
would require 113 749 724 994 connections. This is the main source of TRACE’s 
implausibility. Because the entire lexicon is involved in competition, the entire 
lexicon has to be duplicated at each time slice. 

So, whereas TRACE suffers from the implausibility of having to use multiple 
lexical networks to solve the time invariance problem, the recurrent network 
suffers precisely because it does use only a single network with a single set of 
lexical nodes. Because it uses only one set of output nodes, it is unable to revise 
prior decisions in the light of new information. 

The limitations of the recurrent net demonstrate that the lexical competition 
process incorporated into TRACE is not simply a move forced on TRACE by the 
use of multiple position-specific lexical networks. Any spoken word recogniser, 
even one which uses only a single lexical network, must be able to compare the 
merits of competing lexical candidates and to take account of the constraints 
imposed by overlap between alternative candidates. In automatic speech recogni- 
tion systems this problem is generally solved by algorithms like dynamic 
programming (Bellman, 1957) and its descendents (e.g., Chien, Lee, & Chen, 
1991; Thompson, 1990; Tomita, 1986). In these techniques the task is generally 
expressed as being one of finding an optimum path through a word lattice. The 
word lattice encodes the lexical candidates, their start and end points, the 
evidence in their favour, and possibly the transition probability between succes- 
sive candidates. TRACE performs this same function in a connectionist system 
rather than by traditional programming methods. We can think of the initial 
bottom-up input as specifying the word lattice, and the final sequence of highly 
activated words as specifying a path through the lattice. 

What we would like to do would be to find a way of combining the best 
properties of the recurrent network with the best properties of TRACE. That is, 
we would like to use only a single lexical network, but at the same time ensure 
that each segment of the input is only ever attributed to a single word, even when 
following context causes the initial interpretation to be modified. 

One way to achieve this would be to use a recurrent network to generate a 
small set of lexical hypotheses - a short-list. These lexical hypotheses could then 
form the basis of a small interactive activation network which would perform the 
lexical competition. We can think of the recurrent net as generating a set of lexical 
candidates (the word-lattice) based purely on bottom-up information. No top- 
down feedback from later processes influences either phoneme recognition or 
generation of the candidate set itself. This small set of candidates then has 
somehow to compete with each other in order to determine the final parsing of 
the input. If we could construct a network like the lexical level of TRACE which 
only contained the candidates generated by the recurrent network, then we could 
avoid the problem of duplicating the lexical network. We would need two 
networks, but only one would be a full-blown lexical network generating lexical 
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candidates. The other would be a relatively small network to handle the right- 
context problem. 

Given that the second network in such a scheme would have to contain 
different information at different times, depending on the candidates generated 
by the recurrent network, it would have to be programmable. The network would 
have to be wired differently for different inputs. We have to have a network that 
is rather different in character from most connectionist networks. Most networks 
have a fixed wiring scheme. Although the pattern of weights in connectionist 
networks often vary as a function of learning. all that changes in the short term is 
the pattern of activation evoked by different inputs. That is to say, such networks 
compute the same function irrespective of the input. In the present network the 
effective pattern of connectivity in the network also has to change on a short time 
scale. The connections in the network must be programmable so that part of the 
network can compute different functions when presented with different inputs. 

Interactive activation networks are sufficiently powerful that we can use them 
to construct complex layered processing models like TRACE. In general, such 
networks can have any possible pattern of facilitatory and inhibitory connections 
between nodes. However, the constraint satisfaction system we require to carry 
out the lexical competition process has a very restricted architecture. Each node 
(lexical candidate) is connected to other nodes representing incompatible lexical 
hypotheses by means of bidirectional inhibitory links. The weights between 
competing units are symmetrical. This means that we could also perform the 
lexical competition process using other connectionist constraint satisfaction 
procedures such as a Hopfield net (Hopfield, 1982) or a Boltzmann machine 
(Hinton, Sejnowski, & Akley, 1984). Alternatively, of course, we could compute 
the best path through the set of lexical candidates using an algorithm such as 
dynamic programming or a related technique. These alternative ways of imple- 
menting the constraint satisfaction process will all produce similar results. 
However, the interactive activation algorithm used by TRACE is both simple and 
familiar and will be used in all of the simulations reported here. It is important to 
note that in the interactive activation network used here the only interaction is 
between word nodes at the lexical level. There is none of the between-levels 
interaction which is such a characteristic feature of both TRACE and the 
interactive activation model of visual word recognition. In the present model the 
direction of information flow between levels is always strictly bottom-up. 

McClelland has suggested that some of the problems involved in duplicating 
lexical networks in TRACE can be overcome by using programmable networks 
(CIDs) of the form used in the programmable blackboard model of reading 
(McClelland, 1985, 1986a, 1986b). According to this suggestion, the hardwired 
lexical networks would be replaced by programmable networks whose con- 
nections were determined by a single central lexical network. All of the crucial 
lexical information is then represented in the single lexical network and the 
programmable networks are programmed as and when required. All of the lexical 
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information is stored in a single network so any learning that takes place can be 
restricted to this one network. Also, McClelland (1986a) argues that the 
programmable networks can have fewer connections than hardwired lexical 
networks, so the system is more economical. 

However, McClelland’s proposals solve only part of the problem. The Con- 
nection Information Distribution (CID) scheme described by McClelland is only a 
solution to the time-invariance problem. It tells us how to program a set of small 
lexical networks, so that we can recognise words starting at different times, but it 
does not tell us how to wire the inhibitory connections between overlapping words 
in different networks. It is these inhibitory connections which give TRACE its 
ability to deal with right-context. Programming the inhibitory connections 
between words in different lexical networks represents a rather harder problem 
than programming the networks themselves. Whether two words in different 
networks should have inhibitory connections depends on the conjunction of their 
positions and their lengths. The central module of a CID is not sensitive to 
position or length of a single word, let alone the conjunction of two words. 
Clearly, we don’t want the CID to encode a complete matrix specifying, for all 
possible word pairs and all possible onset positions, how much inhibition there 
should be between them. This would be equivalent to listing all of the inhibitory 
connections between words in TRACE. To reduce the number of inhibitory 
lexical connections we need to abstract over length and onset position rather than 
encode inhibitory information in a permanent store. We need a mechanism to 
determine whether words overlap and to arrange for them to inhibit each other 
accordingly. CIDs do not provide such a mechanism. 

The suggestion being made here is that a single programmable network is used 
simply to solve the right-context problem. The time invariance problem will be 
solved by a version of the recurrent network. That is, instead of programming 
word recognition networks, just program a network to perform the lexical 
competition that is performed by the top lexical layer of TRACE. Such an 
approach has the advantage that the network responsible for lexical competition 
need only contain as many nodes as there are candidates in the short-list. If we 
can get by with considering only a few candidates starting at each segment 
position, then it might be possible to keep the lexical network very small indeed. 

4. The Shortlist model 

The model being presented here assumes that a system similar to the recurrent 
network generates a set of candidate words which are roughly consistent with the 
bottom-up input. Each candidate word is then programmed into a lexical 
competition network working on the same principles as the lexical level of 
TRACE. However, for the sake of computational expediency and speed, two 
important simplifications are made. First, the process of using candidates to 
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program the lexical network is not performed by any clever piece of connectionist 
magic. Instead the model simply wires up the lexical network using conventional 
programming techniques. Second, the recurrent network has one undesirable 
property; with currently available computing resources a recurrent network would 
be prohibitively time consuming to train with a realistically large vocabulary. So 
the output of the recurrent network is simulated by an exhaustive search through 
a large machine-readable dictionary. Neither of these simplifications alter the final 
behaviour of the model, they just ensure that the final behaviour appears in 
seconds rather than years. 

The model therefore consists of two stages. In the first stage an exhaustive 
lexical search derives a short-list of word candidates which match the input. In the 
second stage these candidate words are wired into the constraint satisfaction 
network so that overlapping words inhibit each other in proportion to the number 
of phonemes by which they overlap. As in TRACE, candidate words in the lexical 
competition network are organised according to their onset segment in the input. 
However, in the current model the only candidates considered are those for which 
there is some bottom-up evidence. Unless the number of candidates is limited the 
network could end up being as large as TRACE. In most of the simulations 
presented here the number of candidates which can be conside:ed at each 
segment is therefore limited to 30. Later. simulations will be presented which 
specifically address the issue of the size of the candidate set. 

If there are too many candidates at a given segment then the candidates with 
the lowest bottom-up activation are eliminated to make space for candidates with 
higher scores. That is, they are unwired from the network and the new candidates 
are wired in. The network spans a limited number of segments (currently the 
length of the largest word in the lexicon). If the network wiring were fixed, like 
TRACE, it would soon run out of space when receiving continuous input. 
However, as each new segment arrives the candidates starting at the oldest 
segment are unwired to make space for a new set of candidates. The wiring of the 
network therefore changes dynamically in response to changing input. 

Bottom-up activation of each candidate word is determined by its degree of fit 
with the input. In the current version candidates are generated by an exhaustive 
search of a machine-readable dictionary. All of the simulations reported here use 
a 6000 word subset of the CELEX database compiled at the Max Planck Institute 
for Psycholinguistics. However, similar results have been obtained with two other 
dictionaries, one of which has 26000 entries. 

5. The lexical search procedure 

TRACE has to have a complete lexical network associated with each phoneme 
in the input. The present model has to have a set of candidate words associated 
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with each input phoneme. This small set of candidates performs exactly the same 
job as the full lexical network in TRACE. The candidates represent words with 
onsets at that segment position where the match between the input and the 
candidate exceeds some prespecified criterion. 

The lexical search procedure is designed to simulate the behaviour of a large 
recurrent network in generating candidates in a purely bottom-up fashion. The 
parallelism of the recurrent network has to be simulated by exhaustive serial 
searches of a dictionary. As each new phoneme is presented to the model a 
complete lexical search is performed spanning the input up to N phonemes back, 
where N is the size of the largest word in the dictionary. Obviously, if the longest 
word in the dictionary is, say, 15 phonemes long, then new bottom-up input can 
never change the scores of words in the candidate set starting on the 16th 
phoneme back. As each new phoneme arrives the complete search and match 
process has to be performed to revise the bottom-up match scores for words with 
onsets at any of the previous N phoneme positions. The process has both to 
update the scores for existing candidates and determine whether any new 
candidates should be added to the sets. 

For each word in the lexicon the search procedure computes a score represent- 
ing the degree of match between the word and input for each segment where the 
word might start from. In most simulations reported each word scores + 1 for each 
phoneme that matches the input and -3 for each phoneme that mismatches. So, 
if the current input is lkl, /se/, It/, “cat” and “catalog” will both score 3 
(1 + 1 + 1) whereas “cap” and ‘captain’ will only score -1 (1 + 1 - 3).’ The 
relative weighting of match and mismatch information has an important influence 
on the model’s behaviour and will be addressed in later simulations. 

This scoring procedure has the merits of simplicity and efficiency. However, a 
more realistic procedure would almost certainly be able to make some allowance 
for the possibility that failures in the phonemic analysis might result in insertions 
or deletions of segments. With the present scoring method insertion or deletion of 
a phoneme in the middle of a word will always result in a negative score. 

Note that the use of a mismatch score can be considered analogous to the effect 
of adding inhibitory phoneme-to-word connections to TRACE. The mismatch 
score helps to restrict the number of candidates the model needs to deal with, but, 

’ Note that the output of the search procedure should be equivalent to running a version of TRACE 
with phoneme-word inhibition and no top-down connections or lateral inhibition and then creaming 
off output words with greater than a given degree of activation. 

This simple scoring procedure actually produces some candidates that are unlikely to be produced 
by the recurrent network. Words embedded at the ends of other words (deride) will score as highly as 
words embedded at the beginning (riding). In line with the psychological data the recurrent net shows 
less activation for words embedded at the end of other words. The bottom-up score could be modified 
to reflect this fact. but as the competitive network actually produces the same behaviour anyway the 
simplest possible bottom-up score was used. 
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Table 1. The operation of the search process. As each new phoneme arrives the 
lexicon is searched for words beginning with that phoneme and previous 
searches are updated 

Input 

1. k 
2. z 
3. t 

Search on words beginning 

k 
z+kz 
t 3 ret + kret 

as will be discussed later, it also turns out to be necessary to account for recent 
empirical data (Marslen-Wilson, Gaskell & Older, 1991). 

For a word to be included in the candidate set it needs to have a bottom-up 
score greater than some preset criterion. Currently words more than one 
phoneme in length enter the set if they have a score greater than 1. Single 
phoneme words enter the set if they have a score of 1. Once a word is included in 
the candidate set it stays there unless it is displaced by a higher scoring word, 
even if its bottom-up score drops below criterion. 

Table 1 shows an example of the operation of the search procedure. 

6. The lexical network 

Each candidate that the lexical search generates is wired into the lexical 
network. The most important feature of the lexical network is that words which 
receive support from the same section of the input must compete with each other. 
With few exceptions each phoneme should only be part of a single word. This 
means that overlapping lexical candidates must be connected together by 
inhibitory links. The weights on the inhibitory links are simply proportional to the 
number of phonemes by which the candidates overlap. The greater the overlap, 
the greater the inhibition. The pattern of inhibitory links between a subset of the 
candidate words generated from the input /k&alog/ is shown in Fig. 2. For 
clarity the figure only shows the wiring of nodes which fully match the input. 
Candidates such as battle, which only partially match the input, are not shown. 

The bottom-up activation of each candidate node is a product of the bottom-up 
score for that candidate and the bottom-up excitation parameter. The lexical 
network is an interactive activation network and functions in exactly the manner 
described by McClelland and Rumelhart (1981). The full set of model parameters 
is listed in the Appendix. 

In summary then, the model operates as follows: As each new phoneme is 
presented to the model the lexical search procedure first updates the candidate 
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Figure 2. The pattern of inhibitory connections between candidates produced by presentation of 
lkcetalogl. The figure shows only the subset of candidates completely matching the input. 
The full candidate set would also include words such as battle, catalyst, etc. 

sets and rewires the network as necessary.’ The lexical search also updates the 
bottom-up activation score for each candidate. The lexical competition network 
then cycles through a fixed number of cycles (15 cycles in all of the present 
simulations) before the next phoneme is presented. 

7. Comparison with other models 

The Shortlist model shares a number of features with other models of spoken 
word recognition. In addition with its obvious similarities to TRACE, it also 
manages to capture many of the central insights of the Cohort model. In common 
with TRACE, Shortlist makes use of a competition mechanism to perform lexical 
segmentation. In common with the Cohort model there is a distinction between 
the initial bottom-up activation of potential word candidates (the cohort) and the 
subsequent winnowing down of the the cohort to identify a single word. 

The model differs in a number of important respects from TRACE. First, the 
information flow in the model is bottom-up. That is, no stage in the model sends 
information back down to an earlier stage of processing. Most importantly, there 
is no top-down feedback from the lexical level to phonemic representations. The 

’ In a more complete implementation the bottom-up access procedure (search) would operate on the 
input continuously. updating the bottom-up scores progressively rather than producing new output 
only after each new phoneme. 
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bottom-up activation to the word nodes in the lexical network is determined 
solely by the degree of fit between the word and the input. 

Words which mismatch the input have their bottom-up activation decreased. In 
the present model this is an essential move to help keep the candidate set size 
down to a manageable level. In TRACE there is no candidate set so there is no 
similar pressure to use mismatch information. In TRACE the mismatch score 
would be equivalent to having inhibitory connections between phonemes and 
words. All of the position specific phonemes nodes would have inhibitory 
connections to words which did not contain that phoneme in that position. 
McClelland and Elman discuss the possibility of using phoneme-word inhibition 
but decide against it, pointing out that the same effect is achieved by the 
word-word inhibition. If the input is /k&i then both cat and cap will be 
activated to some extent. However, there will be no need for lti to inhibit cap 
because lexical competition from cat, which will have higher activation, will 
inhibit cap anyway. 

The use of mismatch information in TRACE is therefore lexically mediated. 
The input /kzt/ should inhibit cap because of the lexical competition between cat 
and cap. But lkzgi should not inhibit either cap or cat because /kEgI does not 
have a lexical node to generate inhibition. In a recent study, Marslen-Wilson et al. 
(1991) tested this prediction using a cross-modal priming paradigm. They found 
that any deviation of the input from the target word was sufficient to eliminate 
cross-modal priming regardless of whether the input was a word or a non-word. 
That is, while a word like lkaeti might prime dog, both ikapi and ikaegl would 
be equally ineffective in priming dog. With short non-word primes there is a 
possibility that there might never be sufficient lexical activation of the word to 
produce priming. That is /kz/ might not activate cat much beyond resting level. 
However, they also found that word final mismatches failed to produce priming 
even with long words where the mismatch occurred after the uniqueness point. In 
these cases the non-word should have given rise to substantial lexical activation. 
For example, “apricod” failed to prime fruit. This lack of priming seems unlikely 
to be attributable to insufficient positive match information because splicing off 
the final phoneme and presenting subjects with “aprico” produced similar levels 
of priming to “apricot”. According to TRACE, only the word competitor should 
eliminate the priming whereas the non-word should continue to prime, albeit to a 
lesser degree. The mismatching non-word and the truncated non-word should 
produce identical priming. In the current model the degree of priming will depend 
on the mismatch parameter. If the mismatch parameter is high then any deviation 
will greatly reduce the activation of a candidate. With a very low mismatch 
parameter a candidate may remain sufficiently strongly activated to still produce 
priming. 

A comparison of Shortlist and the Cohort model is hindered by the fact that the 
Cohort model has no explicit computational formulation. In the most recent 
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expression of the Cohort model (Marslen-Wilson, 1987) the all-or-none nature of 
the original Cohort model has been tempered somewhat. Entry into the cohort 
now depends on some degree of goodness of fit between a lexical representation 
and the input rather than on an exact match. Recognition is no longer a matter of 
reducing the cohort to a single member, but now depends “on the process of 
mutual differentiation of levels of activation of different candidates” (Marslen- 
Wilson, 1987, p. 99). In fact, there is no longer even a distinct set of words that 
we can definitively state are members of the cohort. Many candidates may be 
momentarily activated but “it takes some amount of time and input for candidates 
to start to participate fully in the selection and integration process” (p. 99). It is 
this subset of active candidates which effectively constitute the word-initial 
cohort. This set of candidates would seem to correspond closely to the members 
of the candidate set in the Shortlist model. However, in the present model the 
functional distinction between those words which are considered to be members 
of the candidate set and other words is directly reflected in the architecture; 
candidates, or members of the cohort, are given a representation in the candidate 
sets which is distinct from the representation derived from the bottom-up access 
procedure. Note that this is not simply an implementational concern. The need to 
select a candidate set is a necessary consequence of the need to deal with the 
problem of lexical segmentation without duplicating the lexical network. The 
issue of lexical segmentation is not one which the Cohort model directly 
addresses. However, the functional architectures of Shortlist and the Cohort 
model are very similar. Both begin with a data-driven process of candidate 
selection which makes use of a goodness of fit measure, and both use mismatch as 
well as match information to home in on a single candidate. This candidate need 
not be the only candidate in the set, but should have a higher level of activation 
than its competitors. 

8. Relationship to the race model of Cutler and Norris 

One of the major characteristics which distinguishes Shortlist from TRACE is 
the fact that Shortlist is a data-driven system. In Shortlist there is no top-down 
feedback from the lexical level to the phoneme level. However, top-down 
feedback is an essential component of the account TRACE gives of a number of 
phenomena ranging from lexical influences in phoneme monitoring to sensitivity 
to phonotactic constraints. Without this top-down feedback how can Shortlist 
account for these important phenomena? The explanation given by Shortlist for 
these phenomena is precisely the same as the explanation given by the race 
model. In fact, we can think of Shortlist as being an implementation of exactly the 
kind of lexical access system envisaged by the race model. 

The empirical evidence against TRACE comes largely from studies contrasting 
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the interactive predictions of TRACE with the predictions of bottom-up models 
such as the race model of Cutler and Norris. In the race model there are two ways 
of performing phoneme identification, one based on a purely bottom-up 
phonological analysis of the input, the other based on reading phonological 
information out of the lexical representation. The two routes race against each 
other and the final response is determined by the first route to produce an output. 
Shortlist shares two basic features with the race model. First, the phonological 
analysis is completely autonomous. There is no top-down feedback from the 
lexical level to the phonological analysis. Second, the model has explicit 
phonological representations in the lexicon. Phonological information has to be 
read out from these representations in order to align lexical candidates with the 
input. If these representations can also be used for performing phoneme 
identification the model has all of the basic components of the race model. It has 
a phonemic route from the phonological input, and a lexical route from the lexical 
representations. 

Because it is a race model Shortlist is able to explain all of the phenomena 
which have been cited as problematic for TRACE. For example, Frauenfelder, 
Segui and Dijkstra’s demonstration that lexical effects on phoneme monitoring 
can only be facilitatory and not inhibitory is explained exactly as in the race 
model. The race model assumes that although the lexical route can produce faster 
responses than the phonemic route, no matter how much the lexical route is 
slowed this will have no impact on the speed of the phonemic route. Similarly, the 
accounts of the phoneme monitoring data of Cutler et al. and the Ganong effect 
data of McQueen are also identical to the race model explanations already 
discussed. 

9. Shortlist as part of a larger modular system 

As described so far, Shortlist does not have the same broad coverage as 
TRACE. Shortlist is intended primarily as a model of the lexical processes in 
word recognition. However, TRACE is a model of both word recognition and 
pholreme recognition. The interactive nature of TRACE dictates that phenomena 
at both the word and phoneme level have to be considered together. In TRACE, 
phoneme recognition, even in non-words, can be strongly influenced by top-down 
feedback from the lexical level. In Shortlist, the processing at the phoneme level 
is totally unaffected by lexical-level processing. Consequently, Shortlist can be 
considered to be a single component in a modular system (in fact it is two 
components, generation of the candidate set followed by the lexical competition 
process). The other component needed for a complete word recognition system is 
a phoneme recogniser. The assumption being made here is that the phoneme 
recogniser would take the form of the recurrent net described earlier. This is 
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clearly a very practical proposition because similar networks are already in use in 
automatic speech recognition systems. However, the advantages of such networks 
are more than just technological. They also have interesting properties as 
psychological models. The interesting psychological properties of such networks 
stem, once again, from the fact that the time-delayed connections give the net a 
memory for its previous processing operations and therefore enable it to integrate 
information across time. So, for example, such networks readily learn to cope 
with the effects of coarticulation (Norris, 1992, 1993). The categorisation of each 
phoneme can be contingent on the identity of the previous phoneme. In TRACE 
such compensation for coarticulation is achieved by hard-wiring top-down 
connections from the phoneme to the featural level. In a recurrent network 
proper treatment of coarticulation is an automatic consequence of the fact that 
each phoneme is processed in the context of a memory for prior processing 
operations. The sensitivity to prior phonemic context exhibited by recurrent 
networks can extend across a number of intervening phonemes to make the 
network sensitive to statistical and phonotactic properties of the input. 

For example, Norris (1993) simulated Elman and McClelland’s (1988) results 
using a recurrent net identical to that described in Fig. 1. The network exhibits 
categorical perception, compensation for coarticulation (Mann & Repp, 1981; 
Repp & Mann, 1981) and the Ganong effect. Elman and McClelland’s results are 
simulated by combining these three effects. The network was trained to identify 
the current phoneme in the input and to anticipate the next. After training on a 
set of three-phoneme “words”, the network showed a bias to interpret ambiguous 
word-final phonemes so as to form a word rather than a non-word. The net had 
learned the statistical regularities in its input so that after encountering the first 
two phonemes in a word it would fill in the final phoneme even if no input was 
ever presented. The network therefore displayed the Ganong effect by developing 
a sensitivity to statistical sequences in the input rather than by allowing any 
top-down flow of information from a lexical level to influence phoneme process- 
ing. Because the network simply did not have any higher level nodes trained to 
identify words there was no possibility of a top-down lexical influence on 
processing. Shillcock, Lindsey, Levey, and Chater (1992) have extended this 
work and shown that the results of these simulations hold even with a vocabulary 
of 3490 words. So, in the Shortlist model there are actually two potential sources 
of the Ganong effect. Lexical effects may have their origin entirely within the 
lexical level as in the race model explanation of top-down effects, or they may 
have their effect entirely within the phoneme level due to the phoneme level 
developing sensitivity to statistical regularities in the input. 

The performance of recurrent network phoneme recognisers, where sensitivity 
to phonotactic constraints and other statistical properties of the input develops 
entirely within the phoneme level, contrasts with the top-down explanation of 
such phenomena offered by TRACE. In TRACE, sensitivity to phonotactic 
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constraints arises because lexical feedback favours inputs which obey phonotactic 
constraints more than it favours inputs which violate such constraints. The 
explanation in terms of recurrent networks therefore represents a return to a 
more traditional style of modular linguistic explanation in which phonotactic 
knowledge is embedded in the phonological system itself, rather than being 
implicit in the structure of words in the lexicon. The irony here is that the 
top-down TRACE explanation would probably only have occurred to someone 
working within a connectionist framework. However, as we expand our con- 
nectionist horizons to include systems that learn, we find that they give a natural 
expression to the earlier and more modular theories. 

The contrasting accounts of phonotactic effects given by TRACE and a 
bottom-up theory such as Shortlist have some interesting implications in interpret- 
ing data showing that lexical effects in phoneme monitoring may be modulated by 
attentional and task factors (Cutler et al., 1987; Eimas, Hornstein, & Peyton, 
1990; Eimas & Nygaard, 1992). Where no lexical effects are observed, this implies 
that there is little or no top-down activation in TRACE. If there is no top-down 
activation there should be no phonotactic effects either, since they also depend on 
top-down activation. In the Eimas and Nygaard study, no lexical effects were 
observed when the target phonemes appeared in sentential context, but lexical 
effects were obtained when the words appeared in random word contexts in 
conjunction with a secondary task. If top-down effects are absent in sentential 
context then, according to TRACE, phonotactic effects should be absent also. 
This leads to the strange prediction that phonotactic effects should be absent in 
the conditions corresponding most closely to normal comprehension. According 
to the model being presented here, phonotactic effects are due entirely to 
operations within the phonemic level. Whether or not lexical effects are present is 
determined by whether subjects attend primarily to the lexical or phonemic levels. 
The phonemic level should continue to use phonotactic constraints regardless of 
where subjects attention is directed. Also, the strongest phonotactic effects should 
therefore be observed when responses are determined predominantly by the 
phonemic level and lexical effects are at their weakest. 

We can now see that, although Shortlist is primarily concerned with lexical 
processes, it fits into a larger modular framework that gives a broad coverage of a 
wide range of data on human speech recognition. As an implementation of the 
race model of Cutler and Norris Shortlist inherits the ability to explain a range of 
effects which appear to demonstrate an influence of lexical information on 
phoneme identification. At the phonemic level, the work with recurrent networks 
shows that lower level phenomena like categorical perception, and sensitivity to 
phonotactic constraints can also be accounted for within this modular architecture 
and that phonemic processing remains completely unaffected by higher level 
lexical processes. In the simulations that follow we will see that Shortlist 
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complements this earlier work by showing how such a modular system can cope 
with the taxing demands of large vocabulary word recognition. 

10. Input representation 

The primary input to the model consists of a string of phonemes. The choice of 
input representation was determined largely by the simple practical consideration 
that this is the form of representation used in most machine-readable dictionaries. 
However, we also wished to be able to study the behaviour of the mode1 with less 
than perfectly resolved input. This was achieved by allowing the mode1 to accept a 
mid-class phonetic transcription (Dalby, Laver, & Hiller, 1986). The mid-class 
transcriptions are used to represent a degree of uncertainty, or ambiguity in the 
input. There are 12 mid-class categories, each of which corresponds to a small 
class of phonemes such as voiced-stops. Phonemes within a mid-class category 
tend to be highly confusable with each other (Miller & Nicely, 1955; Wang & 
Bilger, 1973). The full set of mid-class categories is shown in Table 2. Each 
mid-class category is assumed to match all phonemes in the class equally well, but 
to mismatch all other phonemes. The match score for mid-class phonemes is set to 
0.7 of that for a full match. 

In addition to a full set of phonemes there is also a silence, or word boundary 
symbol. The symbol for silence mismatches all phonemes. There is also a symbol 
for noise. This symbol is designed to represent noise of a sufficient intensity to 

Table 2. Mid-class categories from Dalby et al. (1986) 

voiced stops 
voiceless stops 
strong voiceless fricatives 
weak voiceless fricatives 
strong voiced fricatives 
front vowels 
back vowels 
central vowels 
diphthongs 
nasals 
liquids 
glides 
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mask any speech input. The noise symbol therefore neither matches nor 
mismatches any phoneme. 

11. Simulations 

The central motivation behind the present model is to provide a solution to the 
right-context problem faced by the simple recurrent network. So the first question 
we have to ask is whether the model can successfully handle cases like catalog. 
Figure 3 shows the model’s behaviour when presented with /k&a@/ as input. 

In this figure, as with all other representations of the model’s output in the 
paper, the lines indicate the activation level of particular candidate words 
following the presentation of each successive phoneme. The starting segment of 
the candidate words is never indicated because this can always be readily deduced 
from the input. For example, /kaet/ and /ketalDg/ must clearly both be members 
of the candidate set beginning at the phoneme ikl. The graph simply indicates 
how the activation of these two words in the ikl candidate set changes over time. 

The output of the model is exactly as one would have hoped. Initially cat is 
slightly more activated than catalog, but once the /a/ arrives the situation 
reverses until finally catalog completely suppresses cat. The initial advantage for 
cat over catalog is due to the fact that cat is shorter. Inhibition between words is 
proportional to the number of phonemes by which the words overlap. Long words 
have more overlap with other long candidates and therefore receive more 
inhibition than short words. TRACE exhibits the same behaviour for exactly the 
same reasons. 

The case of processing words containing other embedded words is only a single 
example of the importance of taking right-context into account in spoken word 
recognition. A number of studies have now demonstrated that information 
presented after word offset can have an important role in word recognition 
(Connine, Blasko, & Hall, 1991; Cutler & Norris, 1988; Bard, Shillcock, & 
Altmann, 1988; Grosjean, 1985). For example, Bard, Shillcock, and Altmann 
used a gating task to show that 21% of words successfully recognised in 
spontaneous speech are not recognised until well after their offset. The study by 
Connine et al. attempted to estimate the time span over which right-context can 
continue to exert an influence on earlier processing. They had subjects identify 
words whose initial phoneme was phonetically ambiguous (TENT/DENT). 
Semantic context was found to influence the categorisation of the ambiguous word 
if it arrived within three syllables of its offset but not if it was delayed until six 
syllables after the word’s offset. Taken together these studies make it clear that 
any satisfactory model of human speech recognition must have the flexibility to 
keep its options open for several phonemes so that early decisions can be 
modified by later context. 



D. Norris I Cognition 52 (1994) 189-234 213 

0.6 

0.5 

0.4 

: 
.- 
; .3 
> ._ 
c 

: 
0.2 

0.1 

0.0 

-0.1 

cat 

- catalog 

Figue 3. Activation of the words “cat” and “catalog” when the model is presented with the inpuf 

“catalog”. Note that words shown as having zero activation are not in the candidate set. 

12. Mismatch evidence 

In order to keep the candidate sets down to manageable proportions we need to 
assume that any mismatch between a candidate and the input will reduce the 
candidate’s bottom-up score. Mismatch information can also act to speed 
recognition of the best fitting candidate. Candidates that do not fit the input will 
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rapidly have their activation reduced and will therefore present less competition 
for the winning candidate. It also turns out that mismatch information is 
important to account for the results of the study by Marslen-Wilson, Gaskell, and 
Older. The question that arises though is what the relative weighting of match and 
mismatch information should be. If the weighting of mismatch information is too 
small then it will not do its job of keeping down the size of the candidate set and 
speeding recognition. If it is too big then any small errors in the pronunciation of 
a word will reduce the bottom-up score so much that the word will not be 
recognised. With a very large weighting of mismatch information the model would 
behave rather like the first version of the Cohort model. Words would effectively 
drop out of the candidate set as soon as the input deviated in any way from the 
expected form of the word. Norris (1982) pointed out that this was a major 
problem for the original Cohort model. If the Cohort model heard cigarette 
pronounced “shigarette” it could not possibly be recognised because cigarette 
would never be incorporated into the cohort. The same problem would arise if the 
initial phoneme of “cigarette” were masked by noise. The ability of the present 
model to overcome these problems is assessed in the next simulation which 
investigates the relative importance of match and mismatch information. 

Figure 4 shows the growth of activation of cigarette during the presentation of 
istgarati, /Srgar&tl and l?rgar&t/, where I?/ represents noise of sufficient intensity 
to mask any phoneme present. Remember that such noise neither matches nor 
mismatches any phoneme. In this simulation the match parameter is set to 1.0 and 
the mismatch parameter to 3.0. Both of the distorted inputs reach a relatively 
high level of activation indicating that the model is not overly sensitive to small 
deviations in the input. Note that lJtgaret/ produces less activation than /?tgarEtl 
because the /J/ is a mismatch to cigarette whereas the noise neither matches nor 
mismatches. 

Table 3 shows the final level of activation after presenting lstgar&t###/, 
/grgar&t###l and /?tgaret###/ for increasing values of the mismatch parameter 
and the activation level after isrgai. It can be seen that although increasing the 
mismatch parameter has no influence on the final level of activation of cigarette, 
by reducing the impact of competitors, it does help the word to be recognised 
earlier. Increasing the value of the mismatch parameter beyond about 3.0 simply 
serves to make the model more sensitive to slight distortions in the input. 
Although there is a tension between the requirement to keep the mismatch 
parameter high to reduce competitors and keeping it low to avoid oversensitivity, 
fortunately there is a middle ground where we can get most of the benefits of a 
high mismatch parameter without making the model too sensitive to small 
distortions of the input. In this case, the model gives us the best of both worlds. 
On the basis of this simulation the mismatch parameter is set to 3.0 in all of the 
remaining simulations. 
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Figure 4. Activation levels of “cigarette” following presentation of “cigarette”, “shigarette” and 

“?igarette” where “?” represents noise of sufjicient intensity to mask the initial phoneme 
completely. 

13. Ambiguity 

The next simulations address the issue of how the model copes with ambiguous 
input. This is examined by replacing at least one of the phonemes in a word by a 
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Table 3. Activation after three periods of silence beyond end of word 

Mismatch 1 2 3 4 5 

/stgaret###l 0.54 0.54 0.54 0.54 0.54 
/Slgaret###/ 0.45 0.40 0.33 0.25 -0. IO 
l’?lgaret###l 0.50 0.50 0.50 0.50 0.50 

Activation after /sIgal 

Mismatch 1 2 3 4 5 
lsrgaret###l 0.21 0.23 0.23 0.24 0.32 

mid-class transcription. The mid-class transcription can be considered to be a 
phoneme whose analysis has not been fully resolved. The input is still compatible 
with a small set of phonemes sharing a number of phonetic features. Comparison 
of activation levels for the original fully transcribed word and the same word with 
some phonemes replaced by mid-class transcriptions will give us some idea of how 
robust the model is when presented with an imperfect input. Remember that the 
6000-word lexicon employed here is 30 times the size of the lexicon employed in 
TRACE simulations. Input containing some phonemes transcribed at the mid- 
class level might therefore be expected to generate a very large number of 
spurious lexical candidates which could severely impair the model’s performance. 

Two simulations are presented, one using words three phonemes long, the 
other using words six phonemes long. Each word is presented to the model 
preceded by one randomly selected context word and followed by two others. 
There were 50 three phoneme words and 50 six phoneme words. Each word was 
presented once with a full transcription, once with the first phoneme given a 
mid-class transcription, and once with the final phoneme given a mid-class 
transcription. 

Figure 5 shows the mean activation levels for the three phoneme words plotted 
from the initial phoneme through to the fifth phoneme following the word. Figure 
6 shows the mean activation levels for the six phoneme words plotted from the 
initial phoneme through to the sixth phoneme following the word. Both figures 
also show the average activation level of the strongest competitor to the presented 
word. 

Not surprisingly, the longer words are clearly more resistant to degradation of a 
single phoneme than are the short words. However, even in the case of the short 
words, the final activation level of the mid-class words is over ten times that of the 
nearest competitor. The model is performing so efficiently here that its behaviour 
is effectively a reflection of the properties of the selection of words in its lexicon. 
Clearly this level of performance is only possible because the density of words in 
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Figure 5. Average activation levels of a three phoneme word and its nearest competitor when the word 

is clear or has either the first or last phoneme replaced by a mid-class transcription. 

the lexicon is not so great that neighboring words become indistinguishable when 
their first or last phonemes are given a mid-class transcription. 

14. Continuous speech 

The previous simulation involved recognising words embedded in context. The 
next simulation demonstrates the performance of the model on strings of words 
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clear or has either the first or last phoneme replaced by a mid-class transcription. 

specifically chosen because they contain other words embedded within them. 
Clearly such cases provide a strong test of the effectiveness of the competition 
mechanism with a large lexicon. Figure 7 shows the output of the model given the 
input “holiday weekend”. As before, the graph does not indicate the starting 
segment for each candidate, but this should be clear from the input. By the end of 
the input the model has clearly resolved any temporary ambiguity in the analysis 
of the input and only the desired words remain at a high level of activation. 
Spuriously activated words have their activation suppressed below zero. 
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Figure 7. Activation levels of words in the candidate set during the presentation of fhe input “holiday 

weekend”. Note that words shown as having zero activation are not in the candidate set. 

Of perhaps greater interest, though, are cases where the interpretation of part 
of the input depends on information arriving several phonemes downstream. In 
the case of clearly transcribed input such examples appear to be rare. However, 
as ambiguity increases so the role of right-context will increase. The study by 
Bard, Shillcock, and Altmann demonstrated how, in a gating task using conversa- 
tional speech, words were often only recognised correctly well after their offset. 
Figure 8 shows the model’s response to the input /Jiprnkwarari/ (ship inquiry). In 
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Figure 8. Activation levels of words in the candidate set during the presentation of the input “shipping 

inquiry ” with the limit on candidate set size at 30. Note that words shown as having zero 
activation are not in the candidate set. The example assumes British English pronunciation. 

this example correct parsing of the input can only be achieved well after the offset 
of ship when inquiry has been recognised. Before that ship is inhibited by 
shipping in much the same way that catalog inhibits cat in Fig. 3. Only when 
shipping itself is inhibited can ship win through. 
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In conjunction with the previous two simulations this demonstrates how the 
model remains remarkably robust even when the input is underspecified or 
potentially ambiguous for substantial portions of the input. 

15. Candidate set size 

In all of the simulations reported so far the candidate set for each segment has 
been limited to 30 words. The next simulation investigates the consequence of 
reducing the candidate set to its minimum size. The minimum size of the 
candidate set is two words. We need two words rather than one to deal with cases 
like “ship inquiry” where part of the input has a misleading analysis. The word 
shipping will always have a higher bottom-up score than ship because it contains 
more phonemes. Therefore, once shipping has made its way into the candidate set 
it can never be displaced by ship, even if it is strongly inhibited by inquiry. Entry 
into the candidate set is determined solely on the basis of bottom-up information. 
Therefore, in order to arrive at the correct interpretation of “ship inquiry” the set 
needs to be able to hold both ship and shipping as candidates simultaneously. 

Figure 9 shows the results of processing ‘ship inquiry’ using a limit of only 2 
candidates per segment. As can be seen, the activation levels are both quali- 
tatively and quantitatively very similar in the two cases. The model works just as 
well with 2 candidates as with thirty. 

With very degraded input the model will very likely need to consider more 
candidates. However, the important issue is not really whether the model will 
perform well with just two candidates per segment, but whether it can perform 
well with a very small number of candidates. To the latter question we can 
undoubtedly respond “yes”. Note that in the present version of the model the 
available candidate nodes are permanently linked to a contiguous set of input 
positions. However, it will generally be the case that many segments will have no 
candidates at all because phonotactic constraints simply do not permit words to 
start with particular sequences of phonemes (in tiptoe there will be no candidates 
starting iptl). Therefore only some fraction of the available candidate nodes will 
ever be used. If candidate nodes were allocated dynamically only to segments 
where they were needed then the total number of candidate nodes required could 
probably be halved. So, on average we may well require only one or two 
candidates per segment multiplied by the number of segments being actively 
considered. 

In the example given earlier of TRACE operating with a 50 OOO-word lexicon in 
which all words were six phonemes in length, we need 550 000 word nodes and 
the lexical level alone of this network required over 1O’l connections. Using, say, 
10 candidates per segment the present network requires only 110 nodes and 4489 
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“shipping inquiry ” with the limit on candidate set size at 2. Note that words shown as 
having zero activation are not in the candidate set. 

connections. With 5 candidates per segment it would need only 1104 connections. 
So, with 5 candidates per segment the present model requires 10’ times fewer 
inhibitory connections than the lexical level of TRACE. 
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16. Lexical competition 

For their operation, both Shortlist and TRACE depend on competition 
between multiple lexical candidates. A large part of the present paper has been 
devoted to presenting a theoretical case that some form of lexical competition is 
an essential part of any system capable of recognising words in continuous speech. 
Nevertheless, the case for competition would be strengthened by empirical 
support for these ideas. 

A number of studies have now used the cross-modal priming task to demon- 
strate that multiple lexical candidates are indeed activated during the early stages 
of auditory word recognition (Marslen-Wilson, 1987, 1990; Shillcock, 1990; 
Swinney, 1981; Zwitserlood, 1989). However, the fact that candidates are 
activated is no guarantee that they actually enter into competition with each 
other. More convincing evidence for both activation and competition comes from 
priming studies by Goldinger, Lute, and Pisoni (1989) and Goldinger, Lute, 
Pisoni, and Marcario (1992). These studies showed that recognition is inhibited 
when words are primed by similar sounding words. Inhibition of the primed word 
is assumed to be due to competition between the prime and the target. However, 
the most direct evidence of competition between lexical candidates comes from a 
study by McQueen, Norris, and Cutler (in press). They employed a word spotting 
task in which subjects had to identify words embedded in nonsense strings. Some 
of the nonsense strings were themselves the onsets of longer words. For example, 
subjects had to spot the word embedded in /darn&s/, the onset of domestic, or in 
the nonword onset /names/. In three experiments McQueen et al. found that 
target words were harder to detect in word onsets like /dam&s/ than in nonword 
onsets like /names/. The competitor word domestic appeared to be inhibiting 
recognition of the target. These competition effects persisted even when subjects 
knew in advance that target words would only ever appear at the ends of the 
nonsense strings. Under these circumstances subjects could, in principle, have 
ignored the onset of the competing word. So, not only do we have very solid 
evidence that lexical competition takes place, but it appears to be a mandatory 
process which subjects are unable to override even when the task would allow 
them to focus their attention away from the source of competition. McQueen et 
al. presented simulations to show that Shortlist gives an accurate account of the 
detailed pattern of competition effects observed in their experiments. 

17. Processing prefixed words 

With a small limit on the number of available candidates, prefixed words, or 
any words with very large initial cohorts, are going to pose problems. Even with 
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thirty candidates there is no guarantee that a word like conductor will make it into 
the short-list before the id/. In the current implementation of the model the 
candidates are filled by a serial rather than a parallel search through the 
dictionary. This means that the members of a cohort listed first will enter the 
candidate set first and fill it up before later members are searched. However, 
remember that the ordered search is actually intended to simulate a parallel 
access process. So, a more plausible way of keeping the candidate set within limits 
might be to include only the most frequent words returned by the search. 

Something rather interesting happens if a word makes a delayed entry into the 
candidate set because the cohort is initially much larger than the set size. Such a 
word must wait until its competitors are eliminated before gaining entry to the 
set. A word making a late entry will not have the same level of activation it would 
have had had it entered the candidate set at the earliest possible moment and 
been able to start building up activation. It then has to struggle with words which 
may now have a lower bottom-up score but which entered the set earlier and had 
more time to build up activation. A word making a late entry into the candidate 
set will therefore be recognised later than if it was included in the set from its 
onset. 

One way to overcome this disadvantage that some words will suffer from is to 
make a single entry in the candidate set represent all words starting with the same 
string of phonemes. If the lexical search produces a large number of words which 
are identical up until the current phoneme then this set of words can be replaced 
by a single entry, or “cohort marker” in the candidate set. The cohort marker 
gets bottom-up input and fights with other candidates just like any single word 
candidate. However, when new input arrives which fits one member of the cohort 
better than others, this word inherits the activation ievel of the cohort marker. 
This best fitting candidate then behaves as though it had been in the candidate set 
right from the earliest point. Note that we might need several cohort markers in a 
single candidate set. As successive phonemes are presented they will deviate from 
some of the words represented by the first cohort marker. That is, not all words 
represented by the cohort marker will share the same initial cohort right up to the 
current input. At this point we will have to split the cohort marker. So, if the 
inptit is lkandl, we might have one marker for lkznd.. . .I, another for 
ikans.. / and so forth. When a cohort marker gets split up, one of the new 
markers will necessarily have less bottom up evidence than another. so the lowest 
scoring marker can be dropped from the candidate set if there is insufficient 
space. Note that unless there is a misanalysis of the input, the correct word will 
always be represented by the highest scoring cohort marker and will therefore 
inherit the maximum amount of activation. The cohort-marker scheme has been 
implemented as an option in the present model and works well in overcoming the 
disadvantage of words in large word-initial cohorts. However, the cohort-marker 
option was not used in any of the simulations reported here. 
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Thus, although at first glance it appears that a network with only a small 
number of candidates per segment will have trouble processing large word initial 
cohorts, this is only a problem if all potential candidates have to be considered 
explicitly. If all of the words in a cohort can be represented by a single cohort 
marker then the candidate set can still be kept very small and this will have no 
disadvantages in terms of how quickly words can be recognised. 

18. Lexical representations 

The current mode1 uses input that takes the form of a phonological representa- 
tion of the input stream. Clearly the mode1 could be modified to use featural or 
syllabic representations, or even to work from whole-word spectra1 templates. 
However, whatever form the input to the model takes, there must be an explicit 
form-based lexical representation of words expressed in the same vocabulary. The 
form-based representation is essential for the working of the mode1 because the 
competition mechanism depends crucially on being able to align lexical candidates 
with the input. Each candidate has to know which section of the input it needs to 
stake a claim to. TRACE also has form-based representations to support the 
competition mechanism, although in TRACE these representations are implicit in 
the connections between the phoneme and lexical layers rather than being 
explicitly stored as part of a phonological representation in the lexicon. 

This contrasts with the original recurrent network mode1 which was simply a 
classification system. The recurrent network could produce a best guess as to what 
word was in the input, but it had no idea where the word began or ended. In this 
respect the recurrent network is rather like the logogen mode1 (Morton, 1969). 
The network produces a response whenever it encounters a word but provides no 
information about the extent of the word in the input. A classification-only system 
might be perfectly adequate for phoneme recognition because phonemes never 
contain other phonemes as their constituents. But because words can contain 
other words as constituents, any effective word recognition system must be able to 
bind candidates to specific parts of the input stream. 

In the majority of connectionist learning systems, such as those using back 
propagation, networks are simply trained to partition the input space. This means 
that such networks learn only as much as they need to in order to differentiate 
between the words they have been trained on. If a word can be recognised on the 
basis of its first few phonemes then the network may simply ignore the identity of 
subsequent phonemes. As a consequence, learning a new word can sometimes 
involve relearning a large part of the existing lexicon. This is because the network 
never really learns about the form of the words in the lexicon, it just learns how 
to tell them apart, and that ability may need to be based on completely new 
information if new words are added to the lexicon. For example, if a word has few 
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lexical neighbours it might be possible to identify it on the basis of a very 
superficial analysis of the input. If the lexicon grows, and the word acquires 
several close neighbours, a completely new analysis procedure will now be 
required to differentiate the word from its new neighbours. However, if the word 
recognition system begins by learning a form-based representation (say a 
phonemic representation) which captures all of the phonemic distinctions in the 
language then the basic representations and analysis procedures will never need to 
change because of changes or increases in vocabulary. A further problem faced by 
networks that perform classification without reference to form-based representa- 
tions is that they will be unable to detect errors in pronunciation. Although such 
networks can recognise words that are slightly mispronounced, unlike human 
listeners, they have no way of knowing how the mispronunciation deviates from 
the target word. They simply do not have a representation of the expected word 
form against which they can compare the input. Mispronunciations simply reduce 
the overall activation level for the word. These networks have no way of 
determining what causes the activation level to be lower than normal. 

The fact that TRACE does have implicit representations of word form in the 
connections between words and phonemes helps it to solve the right context 
problem, but TRACE will also suffer from problems in detecting mispronuncia- 
tions unless it is somehow possible to interrogate the pattern of connections to 
determine which phonemes should be active for a particular word. The pattern of 
phoneme activations will indicate which phonemes are present, but not which 
phonemes should be present. So TRACE must also incorporate an explicit 
representation of word form. At the very least the information which is implicit in 
the connections must be made explicit by providing a mechanism which can 
interrogate the top-down connections and compare that with the bottom-up input. 
In the current model a representation of word form is essential to align candidates 
up with the input. A recurrent network will generate candidate words, but a 
form-based representation must be consulted to discover where the words begin 
and end in the input. In order to work at all, Shortlist must have access to the 
kind of form-based representations required for mispronunciation detection. In 
TRACE, mispronunciation detection depends on making phonemic representa- 
tions explicit. But, once these representations are made available for the purposes 
of mispronunciation detection, they could also be made available for other tasks 
like phoneme identification itself. If TRACE could identify phonemes on the 
basis of lexical representations then it would have incorporated the race model. 

19. Context and relation to checking model 

The present model operates by identifying a candidate set of words before 
sufficient bottom-up information is available to identify the input uniquely. This is 
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exactly the form of the perceptual system required by the checking model (Norris, 
1986) to account for context effects in word recognition. In the checking model all 
context effects take place between the point at which a perceptually derived 
candidate set of words is produced and the point at which the combination of 
perceptual and contextual information leads a single lexical candidate to exceed 
the recognition threshold. Candidates generated by the perceptual analysis are 
checked to evaluate their plausibility in the current context. Recognition thres- 
holds are increased for implausible words and decreased for more plausible 
words. In the current model we can think of the checking process as increasing 
the activation of plausible candidates and decreasing it for implausible candidates. 
In normal discourse, where only a small proportion of the words are highly 
predictable from the context, we would expect most of the valuable work to be 
performed by the inhibitory effects of reducing the activation levels of less 
plausible candidates. When implausible words have their activation levels reduced 
the more plausible candidates will suffer less from competitive inhibition and will 
therefore be recognised more rapidly. Contextual inhibition should therefore be 
seen as having a healthy, facilitatory effect on recognition of any words which are 
not implausible in their context. 

20. Parameter sensitivity 

Whenever a model has a large number of parameters we need to know how 
sensitive the behaviour of the model is to small changes in those parameters. We 
have already investigated the mismatch parameter and seen that it can be varied 
over a wide range without greatly altering the behaviour of the model. The same 
seems to be true of all parameters other than inhibition. Small changes in the 
value of the word-to-word inhibition can produce quite large changes in the 
model’s behaviour. 

One of the main effects of inhibition is to alter the bias against long words. 
Long words are at a disadvantage relative to short words because they will 
overlap with more competitors. Each of those competitors is a source of 
inhibition. So, in the catalog example in Fig. 3 catalog has a lower activation than 
cut after the it/ despite the fact that both words have the same amount of 
bottom-up activation. But, with too much inhibition long words can actually 
become difficult to recognise. Too much inhibition can also act to give early 
decisions excessive momentum. Once a candidate becomes highly activated it can 
suppress all competition. Later context is then totally unable to build up the 
activation of competing candidates and alter earlier decisions. 

Of course, if the level of inhibition is set too low, spurious competitors do not 
have their activation suppressed and the network is unable to do its job of 
producing an unambiguous parsing of the input. For example, with inhibition set 
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at 0.08 ship and shipping are both strongly activated in the ship inquiry example. 
With inhibition at 0.15 shipping is never activated above ship. 

So, while we want to employ as much inhibition as possible to make the 
network produce clean, unambiguous output, this can have the undesirable side 
effect of making the network insensitive to right-context, and it was the need to 
give an account of right-context effects that provided the initial motivation for the 
model. 

Perhaps we should just be grateful that there is a small range of settings of the 
inhibition parameter that does lead to satisfactory performance with a wide range 
of different inputs. However, it is possible to make a small modification to the 
model so that it continues to perform sensibly even with very large settings of the 
inhibition parameter. The central problem with using large amounts of inhibition 
is that candidates that develop a high level of activation early on suppress all 
competitors, even competitors that should ultimately win out. A simple way to 
overcome this is to reset the network at regular intervals. In effect this deprives 
the network of its memory and allows it to settle into a new and optimal 
interpretation of the input. The resetting operation could be performed after a 
fixed number of cycles of the network, or could possibly be synchronised with the 
arrival of each new phoneme. In either case, following the reset all candidates 
start again on an even footing. Under this regime long words will still suffer an 
initial disadvantage relative to short words but, as soon as a long word gets more 
bottom-up support than a short word, it will win out because the short word will 
no longer be starting from the higher level of activation carried over from earlier 
processing. Such a change generally makes very little difference to the behaviour 
of the model until the inhibition is set high. With activation reset at intervals, high 
levels of inhibition no longer prevent the recognition of long words or diminish 
the influence of right-context. 

Two recent studies provide strong empirical support for the idea of resetting 
activation and also show how Shortlist can be extended to incorporate the 
Metrical Segmentation Strategy of Cutler and Norris (1988). Norris, McQueen, 
and Cutler (submitted) and Vroomen and de Gelder (submitted) investigated the 
relationship between the Metrical Segmentation Strategy and lexical competition. 
Cutler and Norris had used a word spotting task to show that identification of 
CVCC words like mint is harder when they are embedded in a strong-strong 
CVCCVC nonsense word like immteifl than in a strong-weak nonsense word 
like imrntafl. According to the Metrical Segmentation Strategy this is because 
mint in imrnterfl is segmented at the start of the strong syllable. Identification of 
mint therefore involves combining information across a strong syllable onset. In 
the strong-weak string lmmtafi there is no such segmentation and identification 
of the target is easier. 

Norris, McQueen and Cutler showed that the effect of metrical segmentation 
(the difference between strong-strong and strong-weak strings) is modulated by 



D. Norris i Cognition 52 (1994) 189-234 229 

lexical competition and only emerges when there is a large number of competing 
lexical candidates beginning with the /t/ of the second strong syllable. Vroomen 
and de Gelder also confirmed that, for strong-strong strings, the greater the 
number of competitors beginning at the /t/the weaker the activation of the target 
word. 

Both of these studies model their data using a version of Shortlist modified to 
incorporate the Metrical Segmentation Strategy of Cutler and Norris (1988). In 
this version of Shortlist the scoring procedure for the lexical match is modified to 
reflect the relationship between the lexical representation of the candidate and the 
metrical structure of the input. Candidates starting at a strong syllable onset are 
given a boost if they themselves have a strong onset. If there is a strong syllable 
onset in the input and the candidate is not lexically marked as having a strong 
onset at that point then the bottom-up score is reduced. So, mint has its score 
reduced in /mrntetf/ because it/ is the onset of a strong syllable whereas in the 
lexical representation of mint the lti will not be marked as being a strong onset. 

Without the reset the number of competitors has a negligible effect on 
recognition of the target word. At the final phoneme the target word generally 
has such a high level of activation that potential competitors are strongly inhibited 
and fail to have any impact of the activation of mint itself. However, when using 
the reset these word final competitors do have an effect on the activation of the 
target word. Even after the end of the target word the reset ensures that the 
target and its competitors all start from zero activation. The competitors can 
therefore influence the target before becoming inhibited themselves. This is 
particularly so when the target word has its bottom-up activation reduced by the 
Metrical Segmentation Strategy. Shortlist can therefore successfully simulate this 
interaction between segmentation and lexical competition, but this does depend 
crucially on resetting the activation after each phoneme. Norris, McQueen and 
Cutler show that the modified version of Shortlist retains its basic character and 
gives an improved simulation of the data from McQueen, Norris, and Cutler (in 
press). 

21. Conclusion 

The lack of architectural elegance in TRACE is largely due to the fact that, in 
order to achieve time invariance, the basic lexical network has to be duplicated 
many times. Each lexical network then has to be interconnected with inhibitory 
links. In contrast, the recurrent network can perform time-invariant recognition 
using a single lexical network with a simple and elegant architecture. A recurrent 
network of this form works perfectly well when recognising isolated words. Even 
if the network begins by making the wrong decision, the decision it makes at the 
end of the word is usually the correct one. However, in continuous speech, any 
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decisions the network makes may have to be revised in the light of subsequent 
context. There is no independent way of determining when a word has ended so 
we cannot simply wait and read the output of the network only at word endings. 
But, with only a single set of lexical output nodes, the recurrent network has no 
continuing representation of earlier decisions. Once a decision is made it cannot 
be altered. If the only failing of the recurrent network were that it failed to 
maintain a record of its decisions, this could be remedied by keeping copies of the 
activation of the output nodes. However, the system needs to be able to compare 
the merits of lexical hypotheses generated at different times. This comparison 
depends on knowing which phonemes in the input generate support for each of 
the lexical candidates. This in turn depends on having a form based representa- 
tion of words. 

If we attempt both to generate lexical candidates and to perform lexical 
competition in the same network it is impossible to avoid duplicating the entire 
lexical network in the way that TRACE does. Each time-slice of the competition 
system has to be capable of recognising every word in the lexicon. However, by 
separating the process of generating lexical candidates from the competition 
process, we can dramatically reduce the scale of the competition problem. The 
lexical competition network need only consider a small short-list of candidates 
generated by a bottom-up lexical access system. This leads to an enormous saving 
in the number of inhibitory connections required between lexical candidates. 

The main aim of the present enterprise was to produce a model that would 
combine the best properties of both TRACE and the recurrent network model 
within the framework of a modular, bottom-up system. Because of the desire to 
build a model that could operate with a large lexicon we have had to sacrifice the 
ability to learn in favour of a sizable vocabulary. Nevertheless, the model has 
successfully demonstrated that the basic architectural principles are sound. The 
model copes with a large vocabulary and the problems of revising decisions in the 
light of following context in a completely bottom-up system that only ever has to 
consider a small number of lexical candidates at each possible starting segment. 
With an unambiguous phonemic input the model was shown to work well with as 
few as two candidates per segment. While TRACE considers the entire lexicon as 
candidates. this model need only consider a small fraction of the lexicon as 
candidates at any one time. Indeed, because of phonotactic constraints, some 
segments may not have any candidates at all. 

As the size of the lexicon is increased the task of finding a unique interpretation 
of a given input string obviously becomes harder. With a large lexicon there will 
be more embedded words and a greater potential for spurious lexical matches. 
However, this model continues to perform well when tested with a vocabulary of 
6000 words and, as already mentioned, it continues to perform well even with a 
26000-word dictionary. Note that with a vocabulary of 26000 words TRACE 
would effectively be considering all 26000 words as candidates at all points! 
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Increasing the size of the vocabulary is one way of increasing the number of 
candidates that the model generates at each position. Another is by deliberately 
degrading the input by using mid-class transcriptions. Simulations using mid-class 
transcriptions once again showed the model to be very robust. Even replacing 
either the first or last phoneme word with a mid-class transcription resulted in less 
than a 9% decrease in the final activation level of the target word while still not 
allowing the average activation level of the nearest competitor to rise much above 
zero. 

One of the central motivations behind the model was to overcome the problem 
of handling right-context faced by the recurrent network. In accord with this goal 
it was shown that the model could cope readily with input where local ambiguities 
temporarily lead the analysis up the garden path. The ship inquiry example 
demonstrates how the model can make use of context which does not become 
available until well after a word has ended. But, most importantly, all of this can 
be achieved using a very large lexicon, no top-down interaction, and as few as two 
lexical candidates per segment. However, the advantages of the Shortlist model 
are not just restricted to providing a more efficient and plausible architecture than 
TRACE. Shortlist also provides a better account of the data. Studies by Cutler et 
al. (1987), Eimas et al. (1990), Frauenfelder et al. (1990) and McQueen (1991a) 
all call into question the emphasis on top-down interaction that is such a central 
feature of TRACE. Instead, these studies all support a bottom-up autonomous 
model like Shortlist which embodies the basic architectural principles of the race 
model. 
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Appendix: model parameters 

The model uses the interactive activation algorithm described in McClelland 
and Rumelhart (1981). Given that the model uses a network with only a single 
layer it has only the following 8 parameters. The parameters representing 
minimum and maximum activation simply scale the range of activation levels and 
are therefore not free model parameters in the sense that they have no effect on 
the pattern of behaviour exhibited by the model. 

minimum word activation: -0.3 
maximum word activation: 1.0 
word-to-word inhibition: 0.12 
bottom-up phoneme-to-word excitation: 0.05 
decay: 0.3 
score for a mid-class match: 0.7 of the match score 
score for a mismatch: -3.0 times the match score 
number of iterations through net per segment: 1.5 


