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We describe a model called the TRACE model of speech perception. The mexde!
is based on the principles of interactive activation. Information processing takes
place through the excitatory and inhibitory interactions of a large number of
simple processing units, each working continuously o update s own activation
on the basis of the activations of other usits to which it is connected. The model
is calied the TRACE model because the network of units forms a dynamic pro-
cessing structure calied ““the Trace.” which serves at once as the perceptual
processing mechanism and as the system's working memory. The model is in
stantiated in two simulation programs. TRACE I, described in detal eisewhere,
deuls with short segments of real speech, and suggests a mechanism for coping
whh the facy that the cies to the identity of phonemes vary as s function of
context. TRACE [, the focus of this article, simulates a large cumber of empirical
findings on the perception of phonemes and words and on the interactions of
phoneme and weord perceplion, At the phoneme level, TRACE {l simuiates the
mfluence of lexical information on the ideatification of phonemes and accounts
for the fact that fexical effects are found under cerfain conditions but net others,
The model also shows how knowledge of phonglogical constrainis can be em-
bodied in particular lexical items buf can still be used to influence processing of
nove!, nonword uiterances. The model also exhibits categorical perception and
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the ability 10 trade cues off apainst each other in phoneme identification. At the
word level, the model captures the major positive feature of Marslen-Wilson's
COHORT model of speech perception, in that it shows mnmedizle sensitivity to
information favoring one word or set of words over others. At the same fime, it
avercomes a difficuity with the COHORT model: it can recover from underspec-
ification or mispronunciation of a word's beginning. TRACE i alse uses lexical
information to segment a stream of speech into a sequence of words and to find
word beginnings and endings, and i simulates a number of recent findings related
1o these points. The TRACE mode} has some limitations, but we believe it is a
step toward a psychologically and computationally adequate mode! of the precess
of speech perception. £ 1986 Academic Press, inc.

{onsider the perception of the phoneme /g/ In the sentence **She re-
ceived a valuable gift.”” There are a large number of cues in this sentence
{0 the dentity of this phoneme. First, there are the acoustic cues to the
identity of the /g/ itself, Second, the other phopemes in the same word
provide another source of cues, for if we know the rest of the phonemes
in this word, there are only a few phonemes that can form a word with
them. Third, the semantic and svyniactic coniext further constrain the
possible words which might occur, and thus Hmit still furthér the possible
interpretation of the first phoneme i “gift.”

There 1s ample evidence that all of these different sources of infor-
mation are used in recognizing words and the phonemes they contain,
Indeed, as Coie and Rudnicky (1983) have recently noted, these basic
facts were described in early experiments by Bagley (1900) over 80 years
ago. Cole and Rudnicky point out that recent work (which we consider
in detail below} has added clarity and detail to these basic findings but
has not lead {0 a theoretical synthes:s that provides a satisfactory account
of these and many other basic aspects of speech perception.

In this paper, we describe a model whose primary purpose is to account
for the integration of multiple sources of information, or constraint, in
speech perception, The model is constructed within a framework which
appears to be ideal for the exploifation of simultancous, and ofien mutual,
constraints. This framework Is the interactive activation framework
(McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1981, 1982},
This approach grew out of a number of earlier ideas, some coming first
from research on spoken language recognition (Marslen-Wilson & Welsh,
1978, Morton, 1969; Reddy, 1976) and others arising from more general
considerations of interactive paraliel processing (Anderson, 1977; Gross-
berg, 1978, McCielland, 1979).

According to the interactive-activatios approach, information pro-
cessing takes place through the excitatory and inhibitory interactions
among a large number of processing elements calied units, Each unit is
a very simple processing device. 1t stands for a hypothesis about the
input being processed. The activation of a unit is monofonically related
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to the strength of the hvpothesis for which the unit stands. Constraints
among hypotheses are represented by connections. Units which are mu-
tually consistent are mutually excitatory, and units that are mutually in-
consistent are mutually inhibitory. Thus, the unif for /g/ has mutually
excifatory connections with units for words containing /g/, and has mu-
tually inhibitory connections with units for other phonemes. When the
activation of a unit exceeds some threshold activation value, it begins o
influence the activation of other units via its oulgoing connections; the
strength of these signals depends on the degree of the sender’s activation.
The state of the system at a given point in time represents the current
status of the various possibie hypotheses about the input; information
processing amounts 1o the evolution of that state, over time. Throughout
the course of processing, each unit is continually recelving inpui from
other units, continually updating its activation on the basis of these inputs,
and, 1f 11 1s over threshold, it is continually sending excitatory and inhib-
itory signals to other units. This “imderactive-activation’ process allows
each hypothesis both to constrain and be constrained by other mutually
consistent or inconsistent hypotheses.

Lriteria and Constraints on Model Development

There are generally two Kinds of models of the speech perception pro-
cess. One kind of model, which grows out of speech engineering and
artifical intelligence, attempts to provide a machine solution to the
problem of speech recognition, Examples of this kind of model are
HEARSAY {Erman & Lesser, 1980; Reddy, Erman, Fennell, & Neely,
1973y HWIM (Wolf & Woods, 1978), HARPY (lL.owerre, 1976), and
LAFS/SCRIBER (Klatt, 19803, A second kind of model, growing out of
experimental psychology, attempis io account for aspects of psycholfog-
icai data on the perception of speech. Examples of this ¢lass of models
include Marsien-Wilson’s COHORT Model (Marslen-Wilson & Tvler,
1980; Marslen-Wiison & Welsh, 1978; Nushaum & Slowiaczek, 1982);
Massaro’s feature integration model {Massare, 198]; Massaro & Oden,
1980a, 1980b: Oden & Massaro, 1978); Cole and Fakimik’s (1978, 1980;
model of auditory word processing, and the model of auditory and pho-
netic memory espoused by Fujisaki and Kawashima (1968) and Pisoni
(1973, 1975).

Each approach honors a different criterion for success. Machine
models are judged in terms of actual performance in recognizing real
speech. Psychological models are judged in terms of their ability to ac-
count for deiails of human performance in speech recognition. We call
these two criteria computational and psychological adeguacy.

In extending the interactive activation approach to speech perception,
we had essentially two guestions: First, couid the interactive-activation
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approach contribute toward the development of a computationally suffi-
cient framework for speech perception? Second, could it account for what
is known about the psychology of speech perception? In short, we wanted
to know, was the approach fruitful, both on computational and psycho-
logical grounds.

Two facts immediately became apparent. First, spoken language mtso-
duces many challenges that make it far from clear how well the interac-
tive-activation approach will serve when extended from print to speech.
Second, the approach itself ts too broad to provide a concrete model,
without further assumptions. Here we review several facts about speech
that played a role in shaping the specific assumptions embodied in
TRACE.

Some Important Facts about Speech

Our intention here is not to provide an extensive survey of the nature
of speech and its percepiton, but rather o point to several fundamental
aspects of speech that have played inportant roles in the development
of the model we describe here. A very useful discussion of several of
these points is availabie in Kiatt (1980).

Temporal nature of the speech stimulus, 1t does not, of course, take a
scientist to observe onc fundamental difference between speech and
print: speech is a signal which is exiended in time, whereas print is a
stimulis which is extended in space. The sequential nature of speech
poses problems for a modeler, in that to account for context effects, one
needs to keep a record of the context. H wouid be a simpie matier o
process speech if each successive portion of the speech input were pro-
cessed independently of all of the others, but in fact, this is clearly not
the case. The presence of context effects in speech perception requires
a mechanism that keeps some record of that context, in a form that allows
it to influence the interpretation of subseguent input.

A further point, and one that has been much neglected in certain
models, s that it is not only prior context but also subseguent context
that influences percepiton. {This and related points have recently been
made by Grosjean & Gee, 1984; Salasoo & Pisoni, 1985, and Thompson,
1984). For example, (Ganong (1980) reported that the identification of a
syllable-instial speech sound that was construcied 10 pe between /g/f and
fk/ was influenced by whether the rest of the syllable was /Is/ {as in
“kiss™y or JAfY/ €as in “'gift”’). Such “right context effects’ {Thompson,
1984} indicate that the perception of what comes in now both influences
and is influenced by the perception of what comes in later. This fact
suggests that the record of what has already been presented cannot not
be a static representation, but should remain in a malieable form, subiect
to alteration as a result of influences arising from subsequent context.
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Lack of boundaries and temporal overfap. A second fundamental point
about speech is that the cues to successive umis of speech freguenily
overlap i time. The probiem is particularly severe at the phoneme level.
A glance at a schematic speech spectrogram {Liberman, 1970, Fig. 1)
ciearly illustrates this problem. There are no separable packets of infor-
maftion in the spectrogram like the separate feature bundles that make up
ietters in printed words.

Because of the overlap of successive phonemes, it is difficult and, we
believe, counterproductive to try fo divide the speech siream up inio
separate phoneme units in advance of identifving the units. A number of
other researchers {e.g.. Fowier, 1984; Klatt, 1980) have made much the
same poini. A superior approach seems to be te allow the phoneme iden-
tification process to e¢xamine the specch stream for characteristic pat-
terns, without first segmenting the stream into separate units,

The problem of overlap is less severe for words than for phonemes,
but it does not go away completely. In rapid speech. words run into each
other, and there are no pauses between words ia running speech. To be
sure, there are often cues that signal the locations of boundaries between
words-—stop consonants are generally aspirated at the beginnings of
stressed words in English, and word 1nitial vowels are generally preceded
by glottal stops, for example. These cues have been studied by a number
of investigators, particularly Lehiste {¢.g., Lehiste, 1960, 1964) and Nak-
atam and coliaborators. Nakatani and Dukes {1977} demonstrated that
perceivers exploit some of these cues but found that certain ufterances
do not provide sufficient cues to word boundaries to permit reliable per-
ception of the intended stterance. Speech errors often involve errors of

FREQUENCY

TIME

FiG. i, A schemalic specirogram Tor the syHable “bag," indicating the overlap of (he
information specifying the different phonemes. Reprinted with permission from Eiberman
(1970).



6 MC CLELLAND AND ELMAN

word sepmentation (Bond & Garpes, 1980), and certain segmentation
decisions are easily influenced by contextual factors (Cole & Jakimik,
1980). Thus, it 15 clear that word recognition cannot count on an accurate
segmentation of the phoneme stream inio separate word units, and In
many <ases such a segmentation would perforce exclude from one of the
words a shared segment that is doing double duty in each of iwo succes-
sive words.

Context-sensitivity of cues. A third major fact about speech is that the
cues for a particular unit vary considerably with the context in which
they occur. For example, the transition of the second formant carries a
great deal of information about the identity of the stop consonant /b/ in
Fig. 1, but that formant would lock quite different had the syilabie been
“hig” or “bog’ insicad of “bag.”” Thus the context in which a phoneme
gccurs restruciures the cues {o the identity of that phoneme (Liberman,
19703, The extent of the restruciuring depends on the unit selected and
on the particular cue involved. But the problem is ubiquitous ia speech.

Not only are the cues for each phoneme dramatically affected by
preceding and following context, they are also altered by more global
factors such as rate of speech (Miiler, 1981), by morphological and pro-
sodic factors such as position in word and in the stress contour of the
utterance, and by characteristics of the speaker such as size and shape
of the vocal tract, fundamental frequency of the speaking voice, and
dialectical variations (see Klatt, 1980, and Repp & Liberman. 1984, for
discussions).

A number of different approaches {0 the probiem have been {ried by
different investigators. One approach is to try to find relatively invar-
iant~-generaily reiational—features (e.g., Stevens & Blumstein, 1981).
Another approach has been to redefine the unit so that it encompasses
the context and therefore becomes more invariant {Fujimura & Lovins,
1982, Klatt, 198(; Wickelgren, 1969). While these are both sensible and
useful approaches, the first has oot vet succeeded in establishing a suf-
ficientiy invariant set of cues, and the second may aHeviate but does not
gliminate the problem; even unif{s such as demisyllabies (Fujimura &
Lovins, 1982), contexi-sensitive allophones (Wickelgren, 1969), or ¢ven
whole words (Klatt, 1980} are still infiuenced by context. We have chosen
to focus instead on a third possibility: that the perceptual system uses
information from the context in which an utiterance occurs fo alter con-
nections, thereby effectively allowing the coniext to retune the percepiual
mechanism on the fly,

Noise and indeterminacy in the speech signal. To compound all the
problems alluded 1o above, there is the additional fact that speech is often
perceived under less than ideai circumstances. While a slow and carefui
speaker in a quiet room may produce sufficient cues to allow correct
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perception of all of the phonemes in an utterance without the aid of lexical
or other higher level constraints, these conditions do not always cbtain.
People can correctly perceive speech under quite impoverished condi-
tions, if it is semantically coherent and syntactically well formed (G.
Milier, Heise, & Lichten. 1951). This means that the speech mechanisms
must be able to function, even with a highly degraded stimulus. In par-
ticuiar, as Thompson (1984), Norris (1982}, and Grosiean and Gee (1984)
have pointed out, the mechanisms of speech perception cannot count on
accurate information about any part of a word. As we shall see, this fact
poses a sertous problem for one of the best current psychological models
of the process of spoken word recognition (Marsien-Wilson & Welsh,
1978},

Many of the characleristics that we have reviewed differentiate speech
from print—at least, from very high quality print on white paper—but
it would be a mistake to think that similar probiems are not encountered
in other domains. Certainly, the sequential nature of spoken imput sets
speech apart from vision, in which there can be some degree of simul-
tancity of perception. However, the probiems of ili-defined boundaries,
context sensitivity of cues, and noise and indeterminacy are ceniral
problems in vision just as much as they are i speech {cf. Bailard, Hinton,
and Seynowski, 1983; Barrow & Tenenbaum, 1978, Marr, 1982} Thus,
though the model we present here 1s focussed on speech perception, we
would hope that the ways in which it deals with the challenges posed by
the speech signal are applicabie in other domains,

The Importance of the Right Architectire

All four of the considerations histed above played an important role in
the formulation of the TRACE model. The model 1s an mnstance of an
interactive activation model, but it is by no means the oniy instance of
such 4 model that we have considered or that could be considered. Other
formulations we considered simply did not appear {0 offer a satisfactory
framework for dealing with these four aspects of speech (see Elman &
McCleliand, 1984, for discussion}. Thus, the TRACE modei hinges as
much on the parficular processing archifecture it proposes for speech
perceplion as it does on the interactive activation processes that occur
within this architecture.

Interactive-activation mechanisms are a ¢lass too broad o stand or fail
on the merits of a single model. To the extent that computationally and
psychologically adeguate models can be built within the framework, the
attractiveness of the framework as a whole is, of course, increased, but
the adequacy of any particular model will generaily depend on the par-
ticular assumpitons that model embodies. [t is no differens with inferactive-
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activation models than with models in anv other compuiational frame-~
work, such as expert systems or production systems.

THE TRACE MODEL

hverview

The TRACE model consists primardy of a very large number of units,
organized into three levels, the feature, phoneme, and word levels, Each
anit stands for a hypothesis about a particular perceptual object occurring
at a particular point in time defined relative to the beginning of the ut-
ierance.

A small subset of the units in TRACE 11, the version of the model we
focus on in this paper, is iliustrated in Figs. 2, 3, and 4. Each of the three
figures replicates the same set of units, ilustrating a different property
of the model in each case. In the figures, each rectangle corresponds to
a separate processing unit. The labels on the units and along the side
indicate the spoken object (feature, phoneme, or word) for which each
unit stands. The left and right edges of each rectangle indicate the portion
of the inpul the unit spans.

At the feature level, there are severai banks of {eature detectors, one
for each of several dimensions of speech sounds. Each bank is replicated
for each of several successive moments in time, or time slices. Al the
phoneme level, there are detectors for each of the phonemes. There is
one copy of each phoneme detector centered over every three time slices.
Each unit spans six time slices, so units with adjacent ceniers span over-
lapping ranges of slices. At the word level, there are detectors for each
word. There is one copy of cach word detector centered over gvery three
feature slices. Here each detector spans & streich of feature shices cor-
responding to the eatire length of the word. Again, then, uaits with ad-
jacent centers span overlapping ranges of slices,

input to the model, in the form of a pattern of activation o be applied
to the upifs at the feature level, is presented sequentially to the feature-
fevel units in successive slices, as H would i it were a real speech stream,
unfolding in time. Mock-speech inputs on the three illustrated dimensions
for the phrase “‘tea cup’’ {(/tik'p/) are shown in Fig. 2. At aay Instani,
input is arriving only at the units in one siice at the feature level. In terms
of the display in Fig. 2, then, we can visualize the input being applied to
successive slices of the network af successive momenss in time. However,
it 1s important to remember that all the units are continually involved in
pracessing, and processing of the input arriving at one time is just hegin-
ning as the mput is moved along to the next time slice.

The entire network of units is called “‘the Trace,”” because the pattern
of activation left by a spoken input 15 a trace of the analysis of the mput
al each of the three processing levels. This trace is uniike many traces,
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Fr3. 2. A subset of the units in TRACE 1. Each rectangle represeats a different unit, The
labels indicate the pem for which the unit stands, and the horzontad edges of the rectangle
indicate the portion of the Trace spanned by cach unit. The input feature speciications for
the phrase “tes cup,” preceded and followed by silence, are indicated for the three ilius
trated dimmensions by the blackening of the corresponding feature units,

though, in that it is dynamic, since it consists of activations of processing
elements, and these processing elements continue to interact as time goes
on. The distinction between perception and (primary) memory is com-
pletely blurred, since the percept is unfolding in the same structures that
serve as working memory, and perceptual processing of older portions of
the input continues even as newer portions are coming into the system.
These continuing interactions permit the model 10 incorporate right con-
text effects, and allow the model to account directly for certain aspects



10 MC CLELLAND AND ELMAN

S AT F O3 O T
Sreees . memanw
k“p B3 ﬂi\ hgﬁi
» . EE B FIAR] A g
A P a ) F 1k A
1“;% 9 S T et | Y
fa TS S M T S N D
go Tt St Y S A S A O
R S0 00 T A M T i N
FNEF I S WA - S|
p
H
0
@ k
£
@ i
&
A
(w3
oM i
?."
g . ik
4 ghi
e .
= .
) :
TR
Li_ﬁi? FEEENH
gh} ]
§I: 3R IFEIE i
E} 1EEFFIdH 1

Fli. 3. The connections of the unit for the phoneme /%7, centered over Time Shice 14, The
rectangle for this unit is highlighted with 2 bold ontlime. The &/ unit has matually excialory
connections to all the word- and feature-ievel units colored either partly or wholly in buck.
The more coloring of & unils’ rectanple, the greater the strength of the connection, The
k! unit hus mutually inhibitory connections to alf of the phoneme-fevel units colored partly
or wholly in grey. Again, the relative amount of inkibition is indicated by the extent of the
coloring of the unil: it is directly proportional 10 the extent of the temporal oveglap of the
nits.

of short-term memory, such as the fact that more information can be
refained for short periods of time if it hangs together to form a coherent
whole.

Processing takes place through the excitatory and inhibitory interac-
tions of the units in the Trace. Units on different levels that are musually
consistent have mufually excitatory conaections, while units on the same
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dimensien in Time Slice 9 and for the highlighted unit for the word /K'p/ starting in Siice
24, Excitatory connections are represented in black. inbiitory connections in grey. as in
Fig. 3.

Acuteness

level that are inconsistent have mutuaily inhibitory connections, All con-
nections are bidirectional. Bidirectional excitatory and mhibitory con-
nections of the unit for /k/ centered over Feature-slice 24 {counting from
() are shown in Fig. 3; connections for the high value of the feature
Vocalic in Slice 9 and for the word /&"p/ with the /K/ centered over Slice
24 are shown in Fig. 4.

The interactive activation model of visual word recognition {Mc-
Clelland & Rumelhar:, [981) included inhibitory connections beiween
each unit on the feature level and leiters that did not contain the feature,
and between each letter unit and the words that did not contain the letter,
Thus the units for T in the first letter position inhibited the units for all
words that did not begin with T. However, more recent versions of the
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visual mode! eliminate these between-level inhibitory connections, since
these connections can interfere with successful use of partial information
{McClelland, 1985; McClelland, 1986). Like these newer versions of the
visuai model, TRACE likewise contains no between-ievel inhibition. We
will see that this feature of TRACKE plays a very important role in its
ability to simulate a number of empirical phenomena.

Sources of TRACE’s architecture. The inspiration for the architecture
of TRACE goes back to the HEARSAY Speech understanding system
{trman & lLesser, 1980; Reddy ¢t al., 1973). HEARSAY introduced the
notion of a Blackboard, a structure similar to the Trace in the TRACE
model, The main difference is that the Trace is a dyaamic processing
structure that is self-updating, while the Blackbeoard in HEARSAY was
a passive data structure through which antonomous processes shared
information.,

The architecture of TRACE bears a strong resemblance to the ““neural
spectrogram’’ proposed by Crowder {1978, 1981} to account for interfer-
ence effects between successive items in short-term memory. Like our
Trace, Crowder’s neural spectrogram provides a dynamic working
memory representation of a spoken input. There are two important dif-
ferences between the Trace and Crowder's neural spectrogram, however,
First of all, the neural spectrogram was assumed only to represent the
frequency spectrum of the speech wave over time; the Trace, on the other
hand, represenis the speech wave in terms of a large number of different
feature dimensions, as well as in terms of the phonemes and words con-
sistent with {he pattern of activation at the feature level. In this regard
TRACE might be seen as an extension of the neural spectrogram idea.
The second difference is that Crowder postuiates mhibitory interactions
between defectors for spectral components spaced up to several hundred
milliseconds apart. These inhibitory interactions extend considerably far-
ther than those we have included in the feature level of the Trace. This
difference dees not reflect a disagreement with Crowder’s assumptions.
Though we have not found it necessary to adopt this assumption to ac-
count for the phenomena we focus on in this article, lateral extension of
inhibition in the time domain might well allow the TRACE framework {0
incorporate many of the findings Crowder discusses in the two articles
cited.

Context-Sensitive Tuning of Phoneme Units

The connections between the feature and phoneme level determine
what pattern of activations over the feature units will most strongly ac-
fivate the detector for each phoneme. To cope with the fact that the
features representing each phoneme vary according to the phonemes sur-
rounding them, the model adjusts the connections from units at the fea-
ture level 1o units at the phoneme level as a function of activations at the
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phoneme level in preceding and following time slices. For example, when
the phoneme /t/ is preceded or followed by the vowel fi/, the feature
pattern corresponding (o the /t/ is very different than it is when the /t/ is
preceded or followed by another vowel, such as /a/. Accordingly, when
the unit for /i/ in a particular slice is active, it changes the patiern of
connections for units for /t/ in preceding and following shices.

TRACE I and TRACE If

1n developing TRACE, and in trying to test its computational and psy-
chological adequacy, we found that we were sometimes led in rather
different directions. We wanted to show that TRACE could process real
speech, but to build a modei that did so it was necessary 1o worry about
exactiy what features must be extracted from the speech signal, about
differences in duration of different features of different phonemes, snd
about how to cope with the ways in which features and feature durations
vary as a function of context. Obviously, these are imporfant problems,
worthy of considerable attention. However, concern with these issues
tended to obscure attention to the fundamental properties of the model
and the model’s ability to account for basic aspects of the psychological
data obtained i1 many experiments.

To cope with these conflicting goais, we have developed two different
versions of the model, called TRACE 1 and TRACE 11. Both models
spring from the same basic assumptions, but focus on different aspects
of speech perception. TRACE | was designed to address some of the
challenges posed by the task of recognizing phonemes from real speech.
This version of the model is described in defail in Elman and McClelland
¢{in press), With this version of the model, we were able to show that the
TRACE framework could indeed be used to process real speech—albeit
from a single speaker utiering isolated monosyliables at this point. We
were also able to demonstrate the efficacy of the idea of adjusting feature
to phoneme connections on the basis of activations produced by sur-
rounding context. With connection strength adjustment in place, the
mode] was able to identify the stop consonant in 99% of a set of isolated
monosyiiables correctly, gp from 799 with an invariani set of connec-
tions. This level of performance is comparable to what has been achieved
by other machine-based phoneme identification schemes {(¢.g., Kopec,
1984} and illustrates the promise of the connection strength adjustment
scheme for ¢oping with variability due to local phonetic context. Ideas
for extending the connection strength adjustment scheme to deal with the
ways m which cues to phoneme identification vary with global variables
{rat¢, speaker characteristics, ete.) are considered in the general discus-
sion.

TRACE 11, the version described in the present paper, was designed
te account primardy for lexical influzences on phoneme perception and
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for what is known about on-line recognition of words, though we ase it
to illustrate how certain other aspects of phoneme perception fall cut of
the TRACE framework. This version of the model is actuailly a simplified
version of TRACE 1. Most importantly, we eliminated the connection-
strength adjustment facility, and we replaced the real speech inputs to
TRACE | with mock speech. This mock speech input consisted of over-
lapping but contextually invanant specifications of the features of suc-
cessive phonemes. Obviously, then, TRACE Il sidesteps many funda-
mental issues about speech. But it makes it much easier to see how the
mechanism can account for a number of aspects of phoneme and word
recognition, A pumber of further simplifying assumptions were made to
facilitate examination of basic properties of the interactive activation pro-
cesses taking place within the model.

The foliowing sections describe TRACE II in more detail. First we
consider the specifications of the mock-speech input o the model, and
then we consider the units and connections thai make up the Trace at
each of the three levels.

Maock-Speech Inputs

The input to TRACE H was a series of specifications for inputs to units
at the feature level, one for each 25-ms time shce of the mock utterance.
These specifications were generated by a simple computer program from
a sequence of to-be-presented segments provided by the human user of
the simulation program. The allowed segments consisied of the stop con-
sonants /bf, /p/, 1A/, i/, fgf, and /k/, the fricatives /s/ and /S/ (*'sh" as in
“ship’’}, the hquids /I and /r/, and the vowels /a/ {as in “'pot’™), /¥ {(as in
“beet’), /uf {as in “boot’"), and 7/ (as m “but’’). /7 was also used (o
represent reduced vowels such as the second vowel in ““target.”” There
was also a “silence’’ segment represented by /~/. Special segments, such
as a segment halfway between /b/ and /p/, were aiso used; their properties
ar¢ descrbed in descriptions of the relevant simulations,

A set of seven dimensions was used in TRACE Il to represent the
feature-level inputs. Five of the dimensions (Consonantal, Vocalic, Dif-
fuseness, Acuteness, and Voicing) were taken from classical work
phonology {Jakobson, Fant, & Halle, 1952}, though we treat each of these
dimensions as continua, in the spirit of Oden and Massara (1978), rather
than as binary feajures. A sixth dimension, Power, was included because
it has been found useful for phoneme identification in varicus machine
systems {e.g., Reddy, 1976), and it was incorporated here to add an ad-
ditional dimension 1o increase the differentiation of the voweis and con-
sontants, The seventh dimension, the amplitude of the burst of noise that
occurs at the beginning of word initial stops, was included to provide an
additional basis for distinguishing the stop consonants, which otherwise
differed from each other on only one or two dimensions. Of course, these
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dimensions are intentional simplifications of the real acoustic structure
of speech, 1n much the same way that the font used by McClelland and
Rumelhart {1981) in the interactive-activation mede! of visual word rec-
ognition was an intentional simplification of the real structure of print.

Each dimension was divided info eight value ranges. Each phoneme
was assigned a value on each dimension; the values on the Vocalic, Dif-
fuseness, and Acuteness dimensions for the phonemes in the utterance
k"p/ are shown in Fig. 2. The full set of values are shown in Table [.
Numbers in the cells of the {able indicate which value on the indicated
dimension was most strongly activated by the feature pattern for the
indicated phoneme, Values range from | = very low 10 8 = very high.
The last two dimensions were aliered for the categorical perception and
trading relations simulations.

Values were assigned to approximate the values real phonemes would
have on these dimensions and to make phonemes that fail inte the same
phonetic category have identical values on many of the dimensions. Thus,
for example, all stop consonants were assigned the same values on the
Power, Vocalic, and Consonantal dimensions. We do not claim to have
captured the details of phoneme similarity exactly. Indeed, one cannot
do s0 in a fixed feature sef because the similarities vary as a function of
context. However. the feature sets do have the property that the feature
pattersn for one phoneme is more simiiar to the feature pattern for other
phonemes in the same phonetic category {stop, fricative, liquid, or vowef)
than it is to the patterns for phonemes in other categories. Among the
stops, those phonemes sharing place of articulation or voicing are more
similar than those sharing neither attribute.

The correlations of the feature patterns for the 15 phonemes used are
shown in Table 2. It is these correlations of the patterns assigned to the

TABLE i
Phoneme Feature Values Used in TRACE I}

Phonerse Power Yocalic Ehiffuse ALt Cons, Voiced Burst
p 4 I 1 2 B i b
b 4 I 7 2 8 7 7
t 4 H 7 7 2 { 6
d 4 H 7 T B T 5
k 4 i 2 3 2 i 4
g 4 1 2 3 8 7 3
5 [ 4 7 8 3 1 e
5 6 4 6 4 5 1 —
T 7 7 1 2 3 B —
; 7 1 2 4 3 . s
a B B 2 i 1 B e
i 8 8 B .3 1 8 R
i ] 8 6 2 ; B —
- 7 R 5 i H 8 e
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different phonemes, rather than the actual values assigned to particuiar
phonemes or even the labels attached fo the different mock-speech di-
mensions, that determine the behavior of the simudation model, since it
is these correlations that determine how much an instance of one pho-
neme wili tend to excite the detector for another.

The feature patterns were constructed in such a way that it was possible
to create feature patterns that would activate two different phonemes in
the same cafegory (stop, liquid, fricative, or vowel) to an equal extent
by averaging the values of the two phonemes on one or more dimensions.
In this way, H was a simple matter (o make up ambigucus inputs, halfway
between two phonemes, or to construct continua varving between {wo
phonemes on one or more dimensions.

The feature specification of each phoneme in the inpui siream extended
over 11 time slices of the inpul. The strength of the pattern grew to a
peak at the 6th slice and fell off again, as iHusirated in Fig. 2. Peaks of
successive phonemes were separated by 6 slices. Thus, specifications of
successive phonemes overfapped, as they doin real speech (Fowler, 1984,
Liberman, 1970},

Generally, there were no cues to word boundaries in the speech
stream--the feature specification for the last phoneme of one word
overfapped with the first phoneme of the next in just the same way feature
specifications of adiacent phonemes overlap within words, However, en-
tire utterances presented to the mode! for processing— whether they were
individual syllables, words, or strings of words—were preceded and fol-
iowed by silence, Silence was not simply the absence of any input; rather,
it was a pattern of feature values, just like the phonemes. Thus, a ninth
vatue on cach of the seven dimensions was associated with sifence. These
values were actually outside the range of values which occurred in the
phonemes themsetves, so that the features of silence were completely
uncorrelated with the features of any of the phonemes used.

Feature Level Units and Connections

The units at the feature level are detectors for features of the speech
stream at parficuiar momenis in time. In TRACE {1, there was a unit for
each of the nine values on each of the seven dimensions in each time
slice of the Trace. The figures show three sets of feature units in several
time siices. Units for features on the same dimension within the same
time stice are mutaaily inhibitory. Thus, the unit for the high value of the
Vocalic dimension in Time Slice 9 inhibits the units for other values on
the same dimension in the same time slice, as fllustrated in Fig. 4. This
figure also ilfustrates the mutually excitatory connections of this same
feature unit with units at the phoneme level. 1a the next section we re-
describe these connections from the point of view of the phoneme level.
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The Phoneme Level and Feature—Phoneme Connections

At the phoneme level, there is a set of detectors for each of the 15
phonemes listed above. In addition, there is a sei of detectors for the
presence of silence. These silence detectors are treated like all other
phoneme detectors. Each member of the set of detectors for a particular
phoneme is centered over a different time slice at the feature level, and
the centers are spaced three time slices apart. The unit centered over a
particular slice received excitatory input from feature units in a range of
slices, extending both forward and backward from the slice in which the
phoneme unit is located. It alsc sends excitatory feedback down to the
same feature units in the same range of slices.

The connection sirengths between the feature-level units and a partic-
ular phoneme-level unit exactly maich the feature pattern the phoneme
is given in its input specification. Thus, as illustrated in Fig. 3, the
strengths of the connections between the node for /&/ centered over Time
Stice 24 and the nodes at the feature level are exactly proportional to the
pattern of input to the feature level produced by an input specification
containing the features of /k/ centered in the same time shice.

There are inhibitory connections between units at the phoneme level.
Units inhibit each other to the extent that the speech objects they stand
for represent aliernative interpretations of the content of the speech
stream at the same point in the utterance. Note that, although the feature
specification of a phoneme is spread over a window of 11 slices, succes-
sive phonemes in the input have their centers 6 slices apart, Thus each
phoneme-level unit is thought of as spanning 6 feature-level slices, as
illustrated in Fig. 3. Tach unit inhibits others in proportion to their
overlap. Thus, a phoneme detector inhibits other phoneme detectors cen-
tered over the same slice twice as much as if inhibits detectors centered
3 slices away, and inhibits detectors centered 6 or more siices away not
at all.

Word {nits and Word-Phoneme Connections

There is a unit for every word in every time slice. Each of these units
represents a different hypothesis about a word identity and starting lo-
cation in the Trace. For example, the unit for the word /K"p/ in Slice 24
(highlighted in Fig. 4) represents the hypothesis that the input contains
the word *‘cup” starting in Shice 24. More exactly, it represents the hy-
pothesis that the input contains the word “cup’” with its first phoncme
centered in Time Slice 24.

Word units receive excitation from the units for the phonemes they
contain in & series of overlapping windows, Thus, the unit for “‘cup’’ mn
Time Slice 24 will receive excitation from /K/ in slices neighboring Slice
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24, from "/ in slices neighboring Slice 30, and from /p/ in slices neigh-
boring Shce 36. As with the feature-phoneme connections, these con-
nections are strongest at the center of the window and fall off linearly on
either side.

The inhibitory connecitons at the word level are similar to those at the
phoneme ievel. Again, the strength of the inhibition between two word
units depends on the number of time slices in which they overlap. Thus,
uniis representing alternative interpretations of the same streich of pho-
neme units are strongly competitive, but units representing interpreta-
tions of nonoverlapping scquences of phonemes do not compete at all.

TRACE I has detectors for the 211 words found in a computerized
phonetic word list that met ali of the foliowing constraints: {a) the word
consisted only of the phonemes listed above; (b} it was not an inflection
of some other word that couid be made by addiag “'-ed.”” **-5,” or
“-mng’’; (c) the word together with is **-ed,”” -5, and “"-ing”” inflections
occurred with a frequency of 20 or more per million in the Kucera and
Francis (1967) word count. 1t is not claimed that the modei’s lexicon is an
exhaustive list of words meeting this criterion, singe the computerized
phonetic lexicon was not complete, but 1t 1s reasonably close to this. To
make specific points about the hehavior of the model, detectors for the
following three words not in the main list were added: ““biush,” “‘regal.”
and “"sleet.”” The model also had detectors at the word level for silence
{~f), which was {reated like a one-phoneme word.,

FPresentation and Processing of an Utrerance

Before processing of an utterance begins, the activations of all of the
units are set at their resting values. At the start of processing, the mput
to the initial slice of feature units is applied. Activations are then updated,
ending the initial tirne cycie. On the next time cycle, the input to the next
stice of feature units is applied, and excitatory and inhibitory inputs to
each unit resulting from the pattern of activation left at the end of the
previous time slice are computed.

It is important to remember that the input is applied, one slice at a
time, proceeding from lefi to right as though it were an ongoing stream
of speech “'writing on’’ the successive time siices of the Trace. The in-
teractive-activation process is occurring throughout the ‘Irace on each
time siice, even though the external bottom-up input is only coming into
the fezture units one slice at a time. Processing interaciions can confinue
gven after the left to night sweep through the input reaches the end of the
Trace. Once this happens, there are simply no new input specifications
applied to the Trace; the continuing interactions are based on what has
already been presented. This interaction process is assumed 1o continue
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indefinitely, though for practical purposes it is always terminated after
some predetermined number of time cyclés has elapsed.

Details of Processing Dynamics

The interactive activation process in the Trace model follows the dy-
namic assumptions laid out in McCleliand and Rumelhart (1981). Each
unit has a resting activatios vaiue arbitrarily set at 0, a2 maximum activation
value arbitrarily sef at 1.0, and a minimum activation sef at —.3. On
every time cycle of processing, ail the weighted excitatory and inhibitory
signals impinging upon a unit are added together. The signal from one
unit o another is just the extent to which its activation exceeds 8; if its
activation is less than 0, the signal is 0.' Global level-specific excitatory,
inhibitory, and decay parameters scale the relative magnitudes of different
types of influences on the activation of each unif. Values for these pa-
rameters are given below.

After the net input {o each unit has been determined based on the prior
activations of the units, the activations of the units arc all updated for
the next processing cycle. The new value of the activation of the unit is
a function of its net input from other units and its previous activation
value. The exact function used (see MeClelland & Rumelhart, 1981) keeps
unit activations bounded between their maximum and minimum values.
Given a constant input, the activation of a unit will stabilize at a point
between its maximum and minimum that depends on the strength and
sign (excitatory or inhibitory) of the input. With a net input of 0, the
activation of the unit will gradually retum to ifs resting level.

Each processing time cycie corresponds (o a single time slice at the
feature level. This is actually a parameter of the model—there is no
intrinsic reason why there should be a single cycie of the interactive-
activation process synchronized with the arrival of each successive slice
of the iput. A higher rate of cycling would speed the percolation of
effects of new input through the network relative (o the rate of presen-
tation.

Quiput Assumptions

Activations of units in the Trace rise and fall as the input sweeps across
the feature level. At any time, & decision can be made based on the pattern
of activation as it stands at that moment, The decision mechanism can,
we assume, be directed to consider the set of units located within a small
window of adjacent slices within any level. The units in this sef thea

! A% the word level, the inhibitory signal from one word to another is just the sguare of
the extent 1o which the sender’s activation exceeds zera. This fends 1o smooth the effects
of many units suddenly becoming slightly activated, and of course it also increases the
dominance of one active word over many weakly activated ones.
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constitute the set of response alternatives, designated by the identity of
the item for which the unit stands (note that with several adjacent slices
included in the set, several units in the alternative set may correspond (o
the same overt response). Word identification responses are assumed to
he based on readout from the word level. and phoneme identification
responses are assumed 10 be based on readout from the phoneme level.
As far as phoneme identification is concerned, then, a homogeneous
mechanism is assumed to be ased with both word and nonword stimuli,
The decision mechanism can be asked to make a response either {a) at a
criterial time during processing or {b) when a unit in the alternative set
reaches a criterial strength relative to the activation of other alternative
units. Once a decision has been made to make a response, one of the
alternatives is chosen from the members of the set. The probability of
choosing a particular alternative { is then given by the Luce (1959%)
choice rule: P
p{R;) e

2

S
when J indexes the members of the alternative set, and

S o ekﬁ i

i

The exponential transformation ensures that all activations are positive
and gives great weight to stronger activations, and the Luce rule ensures
that the sum of all of the response probabdities adds up to 1.0. Substan-
tially the same assumptions were used by McClelland and Rumelhart
{1981).

Minimizing the Number of Parameters

At the expense of considerable realism, we have tried o keep TRACE
11 simple by using homogeneous parameters wherever possible. Thus, as
already noted, the feature specifications of ali phonemes were spread out
aover the same number of time slices, effectively giving all phonemes the
same duration. The strength of the total excitation coming into a partic-
war phoneme unit from the feature units was normalized to the same
vaiue for all phonemes, thus making each phoneme equally excitabie by
its own canonical pattern. Gther simplifying assomptions should be noted
as well. For example, there were no differences ip connections or resting
levels for words of different frequency. I would have been a simple matter
1o incorporate frequency as McClelland and Rumelhart {1981} did, and a
complete model would, of course, inciude some account for the ubiquiious
effects of word frequency. We left it out here to facilitate an examination
of the many other factors that appear to influence the process of word
recognition in speech perception.
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Even with all the simplifications described above, the TRACE model
still has a number of free parameters. These parameters ate listed in Tabie
3. It should be noted that parameters are not in general directly compa-
rable across levels. For example, phoneme-to-phoneme and weord-to-
word inhibition are not directly comparable o each other or to feature-
to-phoneme inhibition, since feature-level units compete only within a
single slice, while phoneme and word units compete in proportion to their
overlap.

There was some trial and error in finding the set of parameters used in
the reported simuilations, but, in general, the qualitative behavior of the
model was remarkably robust under parameter variations, and no sys-
tematic search of the space of parameters was necessary, Generally, ma-
nipufations of parameters simply influence the magnitude or the timing
of one effect or another without changing the basic nature of the effects
observed. Por example, stronger bottom-up excitation speeds things up
and can indirectly influence the size of top-down effects, since, for ex-
ample, stronger word level activations produce stronger feedback to the
phoneme level. Stronger top-down excitation, of course, directly influ-
ences the magnitude of lexical effects. The one parameter that appeared
to influence the gualitative behavior of the mode! was the strength of
within-leve! inhibition. Stronger within-level inhibition make the model
commit itself more strongly to slight early differences in activation among
competing alternatives. There was, therefore, some tuning of this param-
eter to avoid early overcommiiment that would prevent right context from
exerting an influence under some circumstances. Finally, a low rate of
feature-level decay was used to allow feature-level activations 1o persist
after the input moved on to later slices.

The parameter values were held constant at the vaiues shown in the

FTABLE 3
Parameters of TRACE I
Parameter Vahue
Feature ~phoneme excitation 02
Phoneme—-ward excifation 05
Waord -phoneme excitation .03
Pheneme - featisre excitation G
Feature-level inkibition 4
Phoneme-level inhibition® 04
Word-leve! inkibition® 43
Feature-fevel decay Rt}
Phoneme-level decay A3
Word-ievel decay A5

4 Per three time-shices of overlap.
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table throughout the simulations, except in the simulations of categorical
perception and trading relations, Since we were not explicitly concerned
with the effects of feedback to the feature level in any of the other sim-
ulations, we set the feedback from the phoneme level 1o the feature level
to zero to speed up the simulations in all other cases. In the categorical
perception and trading relations simudations this parameter was set at .05,
Phoneme-to-feature feedback tended to slow the effective rate of decay
at the feature level and to increase the effective distinctiveness of different
feature patierns. Rate of decay of feature-level activations and strength
of phoneme-to-phoneme competition were set 10 .03 and .05 to compen-
sate for these effects. No lexicon was used in the categorical perception
and trading relations simulations, which is eguivalent to setting the pho-
neme to word excitation parameter {0 zero.

THE DYNAMICS OF PHONEME PERCEPTION

in the introduction. we motivated the approach taken in the TRACE
model in general terms. In this section, we see thai the simple congepts
that lead to TRACE provide a coherent and synthetic account of a large
number of different kinds of findings on the perception of phonemes.
Previous modeis have been able to provide fairly accurate accounis of a
number of these phenomena. For exampie, Massare and Oden’s feature
integration modei {Massaro, 1981; Massaro & Oden, 1980a, 1980b; Oden
& Massaro, 1978) accounts in deiail for a large body of data on the
influences of multiple cues 1o phoneme identity, and the PisonvFupsaki~
Kawashima model of categorical perception {Fujisaki & Kawashima,
1968; Pisoni, 1973, 1975} accounts for a large body of data on the con-
ditions under which subjects can discriminate sounds within the same
phonetic category. Marslen-Wiison's COHORT model can account for
the time course of lexical influences on phoneme identification. What we
hope 10 show here is that TRACE brings these phenomena, and several
others not considered by either model, together into a coherent picture
of the process of phoneme perception as it unfolds in fime.

The present section consists of three main parts. The first focuses on
iexical effects on phoneme identification and the conditicns under which
these effects are obtained. Here, we see how TRACE c¢an account for
the basic lexical effect, and we make it clear why lexical effects are only
obtained under some condittons. The second part of this section focuses
on the guestion of the roic of phonotactic rules—that 1s, ruies specitying
which phonemes can occur together in English—in phoneme identifica-
tion. Here, we see how TRACE mimics_the apparently rule-governed
behavior of human subjects, in terms of a “conspiracy” of the iexical
items that instantiate the rule. The. third part focuses on {wo aspects of
rhoneme wdentification often considered quite scparately from lexical ef-
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fects-namely, the contrasting phenomena of cue tradeoffs in phoneme
perception and categorical perception, Here we see that TRACE provides
an account of both effects as well as details of their time course. Al three
parts of this section illustrate how the simpie mechanisms of mutual ex-
citation and inhibition among the processing units of the Trace provide a
natural way of accounting for the reievant phenomena. The section ends
with a brief consideration of the ways in which TRACE might be ex-
tended to cope with several other aspects of phoneme identification and
perception.

Lexical Effects

You can tell a phoneme by the company that it keeps.® In this section,
we describe a simple simulation of the basic lexical effect on phoneme
identification reported by Ganong (1980). We start with this phenomenon
pecause it, and the related phonemic restoration effect, were among the
primary reasons why we felt that the interactive-activation approach
would be appropriate for speech perception as well as visual word rec-
ognition and reading.

For the first simulation, the input to the model consisted of a feature
specification which activated /b/ and /p/ equally, followed by (and partially
overlapping with) the feature specifications for /l/, then '/, then /g/. Figure
3 shows phoneme and word-level activations at several points in the
unfolding of this input specification. Each panel of the figure represents

2 ‘Fhis title is adzpied from the title of 2 talk by David . Rumethart on related phenomena
in letter pereeption. These findings are described in Rumethart and McCleiland (1980). We
thank Dave for his permission to adapt the title.
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a different point in time during the presentation and concomitant pro-
cessing of the input. The upper portion of each panel is used to display
activations at the word level; the lower panel is used for activations at
the phoneme level. Each unit is represented by a rectangle, labeled with
the identity of the item the unit stands for. The horizontal extension of
the rectangle indicates the portion of the input spanned by the unit. The
vertical position of the rectangle indicates the degree of activation of the
unit. In this and subsequent figures, activations of the phoneme units
tocated between the peaks of the input specifications of the phonemes
(at Slices 3, 9, 15, etc,) have been deleted from the display for clarity
{the activations of these units generally get suppressed by the moded,
since the units on the peaks tend to dominate them). The input itself is
indicated below each panel, with the successive phonemes positioned at
the temporal positions of the centers of their input specifications. The
I/ along the x axis represents the point in the presentation of the input
stream at which the snapshot was taken.

The figure illustrates the gradual buildup of activation of the two in-
terpretations of the first shoneme, followed by gradual buildups in act-
vation for subsequent phonemes. As these processes unfold, they begin
to produce word-level activations. It 1s difficuif o resolve any word-igvel
activations in the first few frames, however, since in these frames, the
information at the phoneme level simpiy has aot evolved to the point
where it provides enough coastraint to select any one particular word.
In this case, it is only afier the /g/ has come in that the model has infor-
mation teiling it whether the input is closer to “plug,”” ““plus,”” “blash,””
or “blood" (TRACE’s lexicon contains no other words beginning with
fpk/ or /Bl After that point, as illustrated in the fourth panel, “'plug”’
wins the competition at the word level and, through feedback suppor{ io
/p/, causes /p/ to dominate /b/ at the phoneme level. The model, then,
provides an explicit account for the way in which fexical information ean
influence phoneme identification.

Two things about the lexical effect observed in this case are worthy of
note, First, the effect is rather small. Second, 1t does not emerge until
well after the ambiguous segment iself has come and gone. There is a
shght advantage of /p/ over /b/ in Frames 2 and 3 of the figure, 1n these
cases, however, the advantage is not due to the specific information that
this item is the word “‘plug’’—the modei can have no way of knowing
this at these points in processing. The slight advantage for /p/ at these
early points is due to the fact that there are more words beginning with
folf than Mt/ in the model’s lexicon, and in particular, there are more
beginning with /pl”/ than /bi"/. So, when the input is /N, with the ?
standing for the ambiguous /b/~/p/ segment, the model must actually over-
come ihis shghi /p/-ward bias, Eventually, it does so.

Figure 6 shows the temporal course of buildup of the strength of the
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fpf response based opn activations of the phoneme units in Slice 12 for
two cases in which the initial segment is ambiguous between /p/ and /bl
In one case, the ambiguous segment is followed by /'g/ (as in “'phug’);
in the other, it is followed by /I'S/ (as in “‘blush™}. Given the model’s
restricted lexicon, which does not contain the word “plush,” the lexical
effect should lead to eventual dominance of the /p/ response in the first
case, but a suppression of the /p/ response in the second case. The dif-
ferences between the contexts do not begin to show up uniil after the
center of the final phoneme, which occurs at Slice 30, The reason for this
is simply that the information s not available until that point, because
the phoneme that signals what the word wiil be comes at the very end of
the word. The effect takes another few time slices to begin to influence
the activation of the inilial phoneme, because it percolates to the first
phoneme by way of the feedback from the word or words that con-
tain it.

Elimination of the fexical effect by time pressure. Fox (1982) has re-
ported that the lexical effect on word initial segments is eliminated if
subjects are given a deadiine to respond within 500 ms of the ambiguous
scgment. Thouph they can correctly identify unambiguous segments in
responses made before the deadline, these early responses show no sen-
sitivity {0 the lexical status of the alternatives. Similar findings are also
reported by Fox (1984).

Our model is completely consistent with Fox’s results, Indeed, we have
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already seen that the activations in the Trace only begin o reflect the
lexicat effect about one phoneme or so after the phoneme that establishes
the lexical identity of the item. Given that this segment does not occur,
in Fox's experiments, until the second or third segment after the ambig-
uous segment, there is no way that a lexical effect could be observed in
early responses.

But what about the fact that carly responses o unambiguous segments
can be accurate? TRACE accounts for this too, In Figure 7 we show the
state of the Trace at various different points after the unambiguous /b/ in
g/, Here, the /b/ dominates the /p/ from the earliest point. The anai-
ogous result is obtained, when the stimuius is /p/ m /pl'g/, and the acti-
vatton for the initial phoneme is quite independent of whether or not the
item is a word. The response strength for the case when /pl'g/ is presented
in Fig. 6 shows that the probability of choosing /p/ i1s near unity within
12 processing cycles, or 300 ms of the initial segment, well before the
deadline would be reached—and well before word identity specifying
information is available.

Lexical effects late in a word. In the model, lexical effects on word-
initial segments develop rather late, at least in the case where there is no
contexi preceding the word. OF course, the exact fiming of the develop-
ment of any lexical effect would be dependent upon the set of words
activated by the stimulus; if one word predominated early on, a lexical
effect could develop rather carlier. In general, though, word-initial am-
biguities wili reguire time to resolve on the basis of lexical information,
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Fio, 7. The state of the Trace at various stages of processing the stream fbi'g/,
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However, when the ambiguous segment comes late in the word, and the
information that precedes the ambiguous segment has already established
which of the two alternatives for the ambiguous segment is correct,
TRACE shows a lexical effect that develops as the direct percepiual
iformation relevant to the identity of the target segment is being pro-
cessed. This phenomenon is illustrated in Fig. 8, which shows the state
of the Trace at several points In time relative to an ambiguous final seg-
ment that could be a /t/ or a A/, at the end of the context ftarg’/. Within
the duration of a single phoneme after the center of the ambiguous seg-
ment, /t/ already has an advantage over /d/. We therefore predict that
Fox’s resuits would come out differently, were he {0 use word-final, as
opposed to word-imfial, ambiguous segments. In such a case we would
expect the lexical effect to show up well within the 500-ms deadline.
Dependence of the lexical effect on phonological ambiguaity. One fur-
ther aspect of the lexical effect that was noted by Ganong {1980} deserves
comment. This is the fact that the lexical effect on the identity of a
phoneme only occurs with segments which fall in the boundary region
between two phonemes. For segments which are unambiguous examples
of one gategory or the other, the effect is not obtained. TRACE 1s entirely
consistent with this aspect of the data. The influence of the lexicon 18
simply another source of evidence, ke that commg from the feature
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ftarg/ foltowed by 2 segment ambiguous between /7 and /d/.
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level, influencing the activation of one phoneme unit or another. When
the bottom-up input is decisive, it can preempt any fexical bias effects.
We have verified this in simulations presenfing unambiguous tokens of
/pf or /of, followed either by A'g/ or /1°S/. In these simulations. the unit
for the presented initial segment reaches a very high level of activation,
independent of the following context. When the segment comes at the
end of the word. the coniext exerts stronger effects, thus accounting for
the fact that speech distortions are easier to detect when they come early
in a word than when they come late {Marslen-Wiison & Welsh, 1978},
However, even there, i s possibie to override lexicaliy based activations
with clear bottom-up signals, although there may be some slowing of the
activation process which would probably show up in reaction times.

It should be noted that TRACE's account of lexical effects is quite
similar to the account offered by the feature integration theory of Massaro
and Oden (1980a). Indeed, Massarce and Oden’s model provides quanti-
tative fits to Ganong's findings. We will make some mention of the slight
differences in quantitative assumptions between the modeis below. For
now, we note a more crucial difference: TRACE incorporates specific
assumptions about the time course of processing which allows it to ac-
count for the conditions under which lexical effects will be obtained, as
well as for the influence (or a Jack thereof} of lexical effects on reaction
times. to which we now turn.

Absence of lexival effect in some reaction-rime studies. Foss and Blank
{1980) presented some resuits which seemed to pose a challenge to in-
teractive models of phoneme identification in speech perception. They
gave subjects the task of lisiening to spoken senteaces for occurrences
of a particular phoneme in word-initial position. Reaction time to press
a response key from the onset of the target phoneme was the dependent
variable. In one example, the target was /g/ and the sentence was, Af the
end of last year, the governmeni. . . . The subject’s task was simply to
press the response key upon hearing the /g/ at the beginning of the word
government.,

The principle finding of Foss and Blank’s study was that # made no
difference whether the target came at the beginning of a word or a non-
word. Later studies by Foss and Gernsbacher (1983) indicate that other
experiments which have found lexical or even semantic and syntactic
context effects on monitoring latencies are flawed, and that mogitoring
times for word-initial phonemes are primarily influenced by acoustic
factors affecting phoneme detectability, rather than lexical, semantic, or
syntactic factors.

The conclusion that phoneme monitoring is unaffected by the lexical
siatus of the target-bearing phoneme string seems at variance with the
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spiit of the TRACE moded, since in TRACE, the lexical level s always
imvolved in the perceptual process. However, we have already seen that
there are conditions under which the lexical level does not get much of
a chance to exert an effect, In the previous section we saw that there is
no lexical effect on identification of ambiguous word-initial targets when
the subject is under time pressure 1o respond guickly, simply because the
sabiect must respond before information is even available that would
allow the model—or any other mechanism-to produce a lexical effect.

in the Foss and Blank situation, there is even less reason to expect a
lexicai effect, since the target is not an ambiguous segment. We already
saw that activation curves rise rapidly for unambiguous segments: in the
present ¢ase, they can reach near-peak levels well before the acoustic
information that indicates whether the farget 1s in & word or nonword has
reached the subject’s ear.

The results of a simulation run iilustrating these points are shown in
Fig. 9. For this example, we imagine that the target is /t/, Note how during
the initial syllable of both streams, little activation at the word level has
been established. Even toward the end of the stream, where the infor-
mation is just coming in which determines that ““trugus”™ is not a word,
there is little difference, because in both cases, there are several active
word-level candidates, all supporting the word-initial /#/. It is only after
the end of the stream that a real chance for a difference has occurred. Well
before this time arrives, the subject will have made a response, since the
strength of the /¢/ response reaches a level sufficient to guaraniee a high
accuracy by about Cycle 30, well before the end of the word, as illustrated
in Fig. 10,

Even though activations are quite rapid for unambiguous segments,
these can still be mfluenced by lexical effects, provided that the lexical
information is avaiiahle in time, In Fig. 11, we illustrate this point for the
phoneme /t/ in the streams /sikr"t/ (the word “‘secret’’) and /g'ld"t/
(rgukdut,”’ a2 nonword). The figure shows the strength of the #/ response
as a function of processing ¢ycles, relative to all other responses based
on activations of phoneme units at Cycle 42, the peak of the input spec-
ification for the /i/. Clearly, response strengih grows faster for the /t/ in
{sikr™t/ than for the /A/ in /g"1d7t; picking an arbitrary threshold of |9 for
response Initistion, we find that the /t/ in /sikr™Y/ reaches criterion about
3 ¢ycles or 75 ms sooner than the /t/ in /g'ld"V.

Studies showing lexical effects in reaction times. Marslen-Wilson
{1980} has reported an expertment that demonstrates the existence of
{exical effects i phoneme moniloring for phonemes coming at later points
in words. For phonemes coming at the beginning of a word or at the end
of the first syllabie, he found no facilitation for phonemes in words rel-
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Fic. 9 State of the Trace #t thiee different points during the processing of the word
“sarget’” (Narg™) and the nonweord “trugus’ (Ar°g"s).

ative to phonemes in nonwords {in fact there was a nonword advaniage
for these early target conditions}. For targets cocurring at the end of the
second syliable of a two-syllable word (like *‘secret’—though the stimuli
in this particular experiment were Dutch) Marslen-Wilson found an 85-
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indicate the peaks on the feature patterns corresponding {0 the successive phonemes of the
presented word,

ms advantage compared to corresponding positions in nonwords, This
compares gquite ciosely with the value of about 75 ms we obtained for the
fsikrf-gTId Y example, At the ends of even longer words, the word ad-
vantage increased in size to 183 ms. Marsien-Wilson's result thus con-
firms that there are indeed lexical effects in phoneme monitoring—even
for unambiguous inputs—but underscores the fact that there is no word
advantage for phonemes whose processing can be completed long before
lexical influences wouid have a chance to show up.
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The TRACE model and Marslen-Wilson's COHORT model (Marslen-
Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978) offer farrly similar
imerpretations of lexical effects in prhoneme monitoring. Both models
account for the growth in the effect as a function of position in the word.
As in COHORT, lexical effects in TRACE depend on the point at which
the pattern of activation at the word level begins to specify the identities
of the phopemes. In COHORT, there is a discrete moment when this
occurs—when the cohort of items consistent with the input is reduced
to a single item. In TRACE, things are not guite so discrele, However,
it wili still generally be the case in TRACE that the size of the lexical
effect will vary with the location of the “unique point,” the point at which
the bottom-up input remains consistent with only a singie word. How-
gver, since Marslen-Wilson’s experiments were performed with Dutch
words, we have not been able to simulate his experimental demonsiration
of this effect m detail.

TRACE and COHORT make simifay predictions in some sifuations,
but not in all. In the next section, we consider a phenomenon which
TRACE accounts for via the same mechanisms it uses t0 account for the
lexical effects we have been considering. Here, the graded feedback from
the word level to the phoneme fevel aliows TRACE to account for an
effect that would not be predicted by COHORT, unless additional as-
sumptions were made,

Are Phonotactic Rule Effects the Result of a Conspiracy?

Recently, Massaro and Cohen (1983} have reported evidence they take
as suppaort for the use of phonotactic rules in phoneme identification. In
one ¢xperiment, Massaro and Cohen's stimuli consisted of phonological
segments ambiguous between /i/ and /V/ in different contexts. in one con-
text (/1..1/) /v/ 1s permissible in English, but // is not. In another coniexi
{/s_#} /Il s permissibie in English but /¢/ is not. In & third context (/.3

and Cohen found a bias {o perceive ambiguous segments as /1/ when /¢/
was permissibie or as /I/ when /I/ was permissible. No bias appeared in
cither of the other two conditions.

With most of these stimuli, phonotactic acceptability is confounded
with the actual lexical status of the item; thus fAH/ and /fri/ (*flee”” and
“free’’) are both words, as is /tri/ bt not /tii/. In the /s_if context, how-
ever, nefther /sl or /srif are words, vet Massaro and Cohen found & bias
t0 hear the ambiguouns segment as /I, in accordance with phonotactic
rules.

{t turas out thai TRACE produces the same effect, even though it lacks
phonotactic rules. The reason is that the ambiguous stimulus produces



34 MC CLELLAND AND ELMAN

parsial activations of a number of words (“sleep’ and “sieet” in the
model’s lexicon: it would also activate “‘slecve,” “sleek,”” and others in
a model with a fuiler lexicon), None of these word units gets as active
as it would if the entire word had been presented. However, all of them
{in the simulation, there are ony two, but the principle still applies) are
partially activated, and all conspire together and contribuie 10 the acti-
vation of /I/, This feedback support for the /I aliows it to dominaie the
fr{, just as it would if /sti/ were an actual word, as shown in Fig. 12.
The hypothesis that phonotactic rule effects are really based on word
activations leads to a prediction: that we should be able to reverse these
cffects if we present items that are supported strongly by one or more
lexical itemns even if they violate phonotactic rules. A recent experiment
by flman ¢1983) confirms this prediction. In this experiment, ambiguous
phonemes (for exampile, halfway between /b/ and /&) were presented in
three different types of contexts. In all three types, one of the two (in this
case, the /d/} was phonotactically acceptable, while the other (the /b/)
wis not, However, the contexts differed in ther refation to words, In one
case, the legal item actually occurred in a2 word (“bwmndle”-""dwindie'"},
in a second case, neither item made a word, but the illegal item was very
close 10 a word (“‘bwacelet”-“dwacelet'’). In a third case, neither item
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Fii. 2, State of the Trace at several poinls in processing 8 segment ambiguous between
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together since they take on identical activation values.
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was particularly close to a word (“bwiffle’ -""dwiffle’’). Results of the
experiment are shown in Table 4. The existence of a word identical o
one of the two allernatives or differing from one of the alternatives by a
singie phonetic feature of one phoneme strongly influenced the subject’s
choices between the two alternatives. Indeed, in the case where the pho.
notacitcally irregular aliernative {""bwacelet’”) was one feature away from
a particular lexical item (““bracelet™}, subjecis tended to hear the ambig-
uous item in accord with the similar lexical item (that is, as a /bf} even
though it was phonotactically incorrect.

To determine whether the model would also produce such a reversal
of the phonotactic rule effects with the appropriate kinds of stimuli, we
ran a simulation using a simulated input ambiguous between /p/ and /¢/ in
the context /luli/. /p/ is phonotactically acceptabie in this context, but
/tf in this context makes an item that is very close to the word “wruly.”
The results of this run, at two different points during processing, are
shown in Fig. 13. Early on in processing, there is a slight bias in favor
of the /p/ over the /t/, because at first a large number of /pl/ words are
slightly more activated than any words beginning with /t/. Later, though,
the /t/ gets the upper hand as the word ““truly'’ comes to dominate at the
word level, Thus, by the end of the word or shortly thereafter, the closest
word has begun to play a dominating rofe, causing the mode! to prefer
the phonotactically inappropriate interpretation of the ambiguous initial
segment,

Of course, at the same time the word ““truly’” tends to support /t/ rather
than /i/ for the second segment. Thus, cven though this segment is not
ambiguous, and the // would suppress the I/ interpretation in a more
peuiral context, the /rf stays quite active.

Trading Relations and Categorical Perception

In the simulations considered thus far, phoneme identification is influ-
enced by two different kinds of factors, featural and lexical. When one
sort of information is lacking, the other can compensate for if. The image

TABLE 4
Porcentage Choice of Phonotactically lrregular Consonant

Percentage of identifications

Stimulus type Example as illegal” phoneme”
Legal word/ilegal nonword dwindie/bwindle 37
Legal nonword/iHegal nonword dwiffle/bwiffle 46
L.egal noswordfillegal nearword dwacelet/bwacelet 53

“P(2.34) = 26,414, p < DG
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that emerges from these kinds of findings s of a system that exhibits
great flexibility by being able o base ideniification decisions on different
sources of mformation. It is, of course, well established that within the
featural domain each phoneme is generally signaled by a number of dif-
ferent cues, and that human subjects can trade these cues off against each
other. The TRACE model exhibits this same flexibiiity, as we detail
shortly.

But there is something of a paradox. While the perceptual mechanisms
exhibit great flexibility in the cues that they rely on for phoneme identi-
fication, they also appear to be quite “‘catcgorical’ in naturc. That is,
they produce much sharper boundaries between phonetic categorics than
we might expect based on their sensitivity o multiple cues; and they
appear to treat acoustically distinct feature patierns as perceptually
equivalent, as long as they are identified as instances of the same pho-
neme.

In this section, we llustrate that in TRACE, just as in human speech
perception, flexibility in feature interpretation~-specifically, the ahfity
1o trade one feature of a phoneme off against another—-coexists with a
strong tendency toward categorical perception.

For these simulations, the model was stripped down to the essential
minimum necessary, so that the basic mechanisms producing cue trade-
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offs and categorical perception could be brought to the fere. The word
fevel was eliminated altogether, and at the phoneme fevel there were only
three phonemes, /a/, /g/, and /&/, plus silence (/). From these four items,
mputs and percepts of the form /~ga—/ and /~ka-/ could be constructed.
The following additional constraints were imposed on the feature speci-
fications of each of the phonemes: (1) the /a/ and /~/ had no overlap with
either /g/ or /K/, so that neither /a/ nor /~/ would bias the activations of
the /g/ and /k/ phoneme units where thev overfapped with the consenant,
(2) /g/ and /k/ were identical on five of the seven dimensions, and differed
oniy on the remaining two dimensions.

The two dimensions which differentiated /g/ and /k/ were voice onset
time {(VOT) and the onset frequency of the first formant (F1OF). These
dimenstons replaced the voremg and burst amplitude dimeastons used in
all of the other simulations. Figure 14 iHustrates how FI1OF tends to
ingrease as voice onset time 1s delayed.

Summerfield and Haggard (1977} have shown that subjects are sensifive
both to YOT and fo FIOF and that it is possible to frade ong of these
cues off against the other. Thus, the boundary between /ga/ and /ka/ shifis
to longer VOTs when F1 starts off lower rather than higher.

Categorical perception and trading relations among cues have been
studied on a variety of different continua by a variety of differenst inves-
tigators. We have chosen to focus on the VOT and FIOF features, as
exemplified by the /ga’~/ka/ continuum, because there is data on trade-
offs between these cues (Summerfield & Haggard, 1977), and because
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Fri. 84, Schematic diagram of a syliable that will be heard as /ga/ or /ka/, depending on
the point in the syllable at which voicing begins. Prior to the onset of voicing, F2 (top
curvel is energized by aperiodic noise sources, and F1is cut back™’ (the noise source has
little or no energy in this range). Becanss of the fact that Fl rises over time after syliable
onset {as the vocal tract moves from a shipe consistent with the consonant into & shape
consistent with the vowel}, its frequency at the caset of voicing is higher for later values
of VOT. Parameters used in constructing this schematic syiable are derived from Kewiey-
Port's {1982} analysis of the parameters of formants in natural speech, and are similar to
those used in many percepisal experiments,
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several categorical perception studies of VOT continua (using /gi-/k/,
fdi-/tf, or /bi-/p/ stimuii) have covaried both VOT and FIOF, if only
because FIOF tends to covary with VOT when realistic stimuli are used
{e.g., Pisoni & Lazarus, 1974; Samuel, 1977}, Though the simulations use
a /g/-%/ continuum, we consider several categorical perception experi-
ments using /di/t/ and /b//p/ continua, since the same dimensions can
differentiate the two members of both of these other pairs. We also con-
sider data obtained in experiments on other conifinua, using other cues.
We couid easily have repeated the simulations with other sets of continua;
however, the general qualitative form of the results would be the same.
What woulid vary from case 10 cas¢ would be the magnitude of the effecs
of a step along a given dimension.

The pattern of excitatory input to the VOT and FIOF detectors pro-
duced by the canonical mock speech /g/ and /X/ used in the simulations
are illustrated in Fig. 135,

Trading relations. TRACE gquite naturally tends {o produce trading
reiations beiween features, since if relies on the weighted sum of the
excitatory mputs to determine how strongly the inpuf will activate a par-
ticuiar phoneme unit. All else being equal, the phoneme unit receiving
the jargest sum bottom-up excitation will be more strongly activated than
any other, and wiil therefore be the most likely response when a choice
must be made between one phoneme and another. Since the net bottom-
up input is just the sum of all of the inputs, no ong input 1s necessarily
decisive in this regard.

Generally, experiments demonstrating trading relations between (wo or
more cues manipulate each of the cues over a number of values ranging
between a value more fypical of one of two phoniemes and a vaiue more
typical of the other. Summerfield and Hagpard did this for VOT and
FIOF, and found the typical result, namely that the value of one cue that
gives rise to 50% choices of /k/ was affected by the value of the other
cue: the higher the value of FIOF, the shorter the value of YOT needed
for 509 choices of /k/. Unfortunately, they did not present full curves
relating phoneme identification to the values used on each of the two
dimensions. In Heu of this, we present curves in Fig. 16 from a classic
trading relations experiment, by Denes (1955), Similar patierns of results
have been reported in other studies, using other cues (e.g., Massaro,
1981, Figs. 4 and 5), though the transitions arc often somewhat steeper
{see below for a discussion of the issue of steepness). We have chosen
1o present the shaliower curves reported by Denes because in them we
see clearly that there are cases in which a cue that favors one of the twi
phonemes 1o a moderate degree will give rise to the perception of the
other phoneme when paired up with a strong cue that favors the other
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Fi6, 15, Canopical feature-fevel input for/g/ and 7&K/, on the two dimensions that distinguish
therms. and the patterns used for the five inlermediate values used in the trading relations
simulalion. Along the abscissa of each dimension the nine units for the nine different value
ranges of the dimension are arrayed. The curves labeled /g/ and /k/ indicate the relative
strength of the excitatory input to each of these units, produced by the imdicated phoneme.
Fhe canonical curves also mndicate the strengrhs of the feature-to-phoneme conpections Tor
fg/ and /&/ on these dimensions, That 5. the canenical input paliern for cach phoneme
exacily matches the strengths of the corresponding feature—phoneme conneciions, Num-
bered curves on each dimension show the feafure paiterns wsed in the trading relations
sirmtlation.

phoneme. An additionai {inding is the bowing of the curves; they tend to
be approximately jinear through the middle of their range, but to level
off at both ends, where the values on both dimensions agree in pointing
to one aliernative or the other.

To see if TRACE would simulate the basic trade-off effect obtained by
Summerfield and Haggard. and fo see if it would produce the same shape



40 MC CLELLAND AND ELMAN

gicor
p3
5 ®o ’
=
§50~ -
g
lL4O|‘“" e
[+]
FIES

¥ 150 MSEC
A A 206 MSEC
5 ol Lo
It i :
o 0L 756

00 23] 200
FRICATION DURATION OMSEC)

Fis. 16, Results of an experiment demonstraling the trade-off between two cues to the
identity of /&/ and /z/. Data from Denes, 1955, fitted by the model of Massare and Coken,
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trade-off curves as have been generally reported, we generated a set of
25 intermediate phonetic segments made up by pairing each of five dif-
ferent intermediate patterns on the VOT dimension with each of five
different intermediate patterns on the F1OF dimension. The different
feature patterns used on each dimension are shown in Fig. 15, along with
the canonica!l feature patterns for /gf and /k/ on each of the swo dimen-
sions. On the remaining five dimensions, the intermediate segments ail
had the commaon canonical feature values for /g/ and /&/.

The model was tested with each of the 25 stimuli, preceded by silence
{//) and foowed by /a~/. In this and all subsequent simulations we report
in this paper, the peak of the initial stience phoneme occurred at Time
Slice 6 in the input, and the peaks of successive phoneme segments oc-
curred at six slice intervals. Thus, for these stimuli, the peak on the
intermediate phonetic segment occurred at Slice 12, the peak of the fol-
lowing vowel occurred at Slice 18, and the peak of the final silence oc-
curred at Slice 24. For cach input presented, the interactive activation
process was allowed o continue through a total of 60 time siices, well
past the end of the iaput. The state of the Trace at various points in
processing, for the most /g/-like of the 28 stimuli, is shown in Fig. 17, At
the end of the 60th time slice, we recorded the activation of the usits for
/g/ and /K/ in Time Slice 12 and the probability of choosing /g/ based on
these activations. (It makes no difference to the qualitative appearance
of the results if a different decision me is used; eariler dectsion fimes
are associated with smaller differences in relative activation between the
/gf and /k/ phoneme units, and later ones with larger differences, but the
general pattern is the same.) :
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Fig. 17, The state of the Frace at various points during and afler the presentation of a
sviiable consisting of the most /gilike of the 25 intermediate segments used in the trading
relations experiment, represemied by /XV, preceded by sifence and followed by fal. then
another silence.

Response probabilities were computed using the formulas given earlier
for converting activations to response strengths and strengths into prob-
abilities. The resulting response probabiiities, for each of the 25 condi-
tions of the experimment, are shown m Fig. {8. The pattern of resaits is
quite similar to that obtained in Denes (1955) experiment on the /s/-/z/
contingum. The contribution of each cue is approximately linear and
additive in the middle of the range, but the curves flatten out at the
extremes, as in the Denes (1955} experiment. More importantly, the mod-
el's behavior exhibits the ability to trade one cue off against another. For
example, there are three different combinations of feature vaiues which
fead to a probability between 82 and .85 of choosing /kK/: (1) the neutral
vahie of the VOT dimension coapled with the most /ki-like value on the
FIOF dimension; (2) the neutral value on the FIOF dimension coupled
with the most /k/-like value of the VOT dimension: and (3} the somewhat
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Fii. 18, Simulated probability of choosing /&/ at Time Slice 60. for each of the 25 stimul:
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the intermediale pattery on the FIOF continuum used in the five stimuli contributing to
each curve. Higher numbers correspond to higher values of FIOE
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/k/-iike values on both dimensions. In terms of Summerfield and Hap-
gard’s measure, the value of VOT needed 0 achieve 30% probability of
reporiing /k/, we can see that the VOT needed increases as the FIOF
decreases, just as these investigators found.

Cue trade-offs in phoneme 1dentification are accounted for in detail by
the feature integration model of Oden and Massaro £1978; Massaro, 1981,
Massaro and Oden, 1980z, 1980b). While we have shown how TRACE
can account for the basic irade-off effect and the general form of the
trade-off curves, we have not yet attempied the kinds of detailed fits that
Massaro, Oden, and coilaborators have reported in a number of studies.
However, the models are guite similar, so it seems rather uniikely that
cue trade-off data would be able 10 discriminate between them. And both
make special assumptions about lack of invariance of cues to phoneme
identity across contexts.

One apparent dissimilarity between the models deserves comment,
Whereas cue strengths are combined multiplicatively in the determination
of response strengihs in the feature integration model, they are combined
additively in the bottom-up inputs to the units in TRACE. However, in
TRACE, two further computational steps take place before these inputs
result in response strengths. First, the inferactive-activation process en-
hances differences between competing units. Second, the resulting unit
activations are subjecied 10 an exponential transformation. just this
second step by itself would transform influences that have additive effects
on unit activations into influences that have multiplicative effects on re-
sponse strength. Thus, the models would be mathematically equivalent
if the interactive activation process were simply replaced by a linear,
additive combination of inputs to the units. In guantitative formulations
of the interactive activation process closely related to the ones we use
{Grossberg, 1978), what the interactive activation process does is simply
rescale the unit activations, preserving the ratios of their botiom-up
activation but keening them bounded. Though our version of these equa-
tions does not do this exactly, the ways in which it deviates from this
would be difficult to use as the basis for an empirical distinction between
the TRACHE approach and the fegture integration model. Thus, up to a
point, we can sec TRACE as (approximately) implementing the compu-
tations specified in Oden and Massaro's maodel. The models differ,
though, in that TRACE is dynamic¢ and in that it incorporates feedback
to the phoneme level. This allows TRACE to account for calegorical
perception in a different way.

Cutegorical perception. In spite of the fact that TRACE is quite flexibie
in the way it combines information from different features to determine
the identity of a phoneme, the model is quite categorical in its overt
responses. This is ilfustrated in two ways: first, the model shows a much
sharper transition in its choices of responses as we move from /g/ to /k/
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along the VOT and FI10OF dimensions than we would expect from the
slight changes in the relative excitation of the /g/ and /X/ units. Second,
the model tends to obliterate differences between different inpuis which
it identifies as the same phoneme, while sharpening differences between
mpts assigned to different categories, We will consider each of these
two points in turn. after we describe the stimuli used in the simulations.

Eleven different conscnant feature patierns were used, embedded in
the same simulated /~~_a-/ context as in the trading reiations simulation.
The stimul: varied from very low values of both VOT and FIOF, more
extreme than the canontical /g/, through very high values on both dimen-
sions, more exireme than the canontcal /k/. All the stimuli were spaced
equai distances apart on the VOT and FIOF dimensions. The focations
of the peak activation values on each of these two continua are shown
in Fig. 9.

Figure 20 indicates the relative nitial bottom-up activation of the /g/
and /k/ phoneme usits for each of the {1 stimuii used in the simuiation.
The first thing to note is that the relative boltom-up exciiation of the two
phoneme units differ only shightly. For example, the canonical feature
pattern for /g/ sends 73% as much cxcitatton 1o /gf as it sends to /k/. The
feature pattern two steps toward /g/ from /k/ {Stimulus 3}, sends BB as
much activation o /g/ as fo /K/.

The figure also indicates, in the second panei, the resulting activations

/8/ /k/
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Voige Onget Time
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Fiz. 19, Locations of peak activations along the VOT and F1OF dimensions, for each of
the i stimuli used in the categorical perception simulation,
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Fi, 20, BEffects of competition on phoneme activations. ‘The first panel shows relative
amounts of hottom-up excitatory nput to g/ and /k/ produced by each of the 11 stimudi
used in the categorical perception simulation. The second panel shows the activations of
units for /g/ and /k/ at Time Cycle 60, Stimuli 3 and 9 correspond to the canonicat /g/ and
&/, respectively.

of the units for /g/ and /&/ at the end of 60 cycles of processing. The shight
differences in net input have been greatly amplified, and the activation
curves exhibit 2 much steeper transition than the relative bottom-up ex-
citation curves.

There are two reasons why the activation curves are so much sharper
than the initial bottom-up excitation functions. The primary reason 1s
competitive inhibition. The effect of the competitive inhibition at the pho-
neme level is to greatly magnify the slight difference in the excitatory
inputs to the two phonemes. It is easy o see why this happens. Once
one phoneme is slightly more strongly activated than the other, it exerts
a stronger inhibitory influence on the other than the other can exert on
it. The net result is that “*the rich get richer.”” This general property of
competitive inhibition mechanisms was discussed by McClelland and Ra-
melhart (1981}, following earlier observations by Grossberg (see Gross-
berg, 1978, for a discussion) and Levin {1976); it is also well known as
one possible basis of edge enhancement effects in low levels of visual
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information processing. A second cause of the sharpening of the activa-
tion curves is the phoneme-to-feature feedback, which we consider in
detail in a moment,

The identification functions that result from applying the Luce choice
rule to the activation values shown in the second panel of Fig. 20 are
shown in Fig. 21 along with the 1BX discrnimination function, which is
discussed below, The identification functions are even sharper than {he
activation curves; there is only a 4% chance that the model will choose
/k/ instead of /g/ for Stimulus 5, for which /K/ receives 88% as much
bottom-up support as /g/. The increased sharpness is due to the properties
of the response strength assumptions. These assumptions essentiafly im-
plement the notion that the sensitivity of the degision mechanism, in
terms of d° for choosing the most strongly activated of two units, is a
finear function of the difference in activation of the two units. When the
activations are far enough apart, ' will be sufficient to ensure near-100%
correct performance, even though both units have greater than 0 activa-
tiosr. Of course, the amount of scparation in the activations that is nec-
essary for any given level of performance 1s a matter of parameters: the
relevant parameter here is the scale factor used in the exponential trans-
formation of activations. The value used for this parameter in the present
sisnufations {10) was the same as that gsed in alf other cases where we
transiate activation into response probability, mncluding the trading rela-
tions simulation.

Some readers may be puzzied as 10 why TRACE 1l exhibits a sharp
identification funciion in the categorical perceplion experiment, bui
shows a much more gradual transition between /g/ and /k/ in the trading
relations simulation, The reason is simply that finer steps along the VOT
and FIOF continua were used in the {rading relations simulation, All of
the stimull for the trading relations simulation lie between Stimuli 6 and
4 in the categorical perception simulation.
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Fici, 21, Simulated idenification functions and forced-choice accaracy in the AFX task,
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This obviousty brings out the fact that the apparent steepness of the
identification function depends on the grain of the sampiing of different
points along the continuum between two stimuli, as well as a host of
other factors (Lane, 1963). Whether an empirical or simulated identifi-
cation function looks steep or not depends on the selection of stimuli by
the experimenter or modeler. However, it is worth noting that the steep-
ness of the identification function is independent of the presence of
{rading relations, at least in the simulation model. That is, if we had used
more widely separated steps along the VOT and FIOF dimension, we
would have obtained much steeper identification fupctions. The additivity
of excitatory inputs would still apply, and thus it would still be possible
to trade cues off apainst each other.

In TRACE, the categorical output of the model comes about only after
an interactive competition process that greatly sharpens the differences
in the activation of the detectors for the relevant units. This interactive
process takes time. In the simulation resulis reported here, we assumed
that subjects waited a fixed time before responding. But, If we assume
that subjects are able to respond as soon as the response strength ratio
reaches some criterial level, we would find that subjects would be able
to respond more guickly to stimuli near the prototype of each category
than they can to stimuli near the boundary, This is exactly what was
found by Pisoni and Tash {1974).

The sharpening the model imposes on the identification function. in
comunction with the fact that it can trade one feature off against another,
shows how the model, like human perceivers of speech, can be both
flexible and decisive at the same time. These aspects of TRACE are
shared with the feature integration modei (Massaro, 1981}, However, the
TRACE model’s decisiveness extends even further than we have cb-
served thus far; feedback from the phoneme (o the feature fevel tends to
cause the model 10 obliterate the differences between input feature pat-
terns that result in the identification of the same phoneme, thus aljowing
the model to provide an account not only for sharp identification func-
flons, but also for the fact that discriminabihty of speech sounds is far
poorer within categories than it is between categories.

Sirictly speaking, at least as defined by Liberman, Cooper, Shank-
weiler, and Studdert-Kennedy {1967), true categorical perception is only
exhibiteé when the ability to discriminate different sounds is no hetter
than could be expected based on the assumption that the only basis a
listener has for discrimination 1s the categorical assignment of the stim-
ulus to a particular phonetic category. However, it is conceded that
“true'' categorical perception in this sense is never m fact observed
{Staddert-Kennedy, Liberman, Harris, & Cooper, 1970). While it is true
ihat the discriminaiion of sounds is mach better for sounds which per-
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ceivers assign 10 different categories than for sounds they assign to the
same category, there is also at least a tepdency for discrimination o be
somewhat better than predicied by the identification function, even be-
tween stimult which are always assigned fo the same category. TRACE
H produces this kind of approximate categorical perception,

The way it works is this. When a feature pattern comes in, it sends
more excitation fo some phoneme units than others; as they become
active, they begin to compeie, and one graduaily comes to dominaie the
others. This much we have already observed. But as this compelition
process is going on, there 1s also feedback from the phoneme level to the
feature ievei. Thus, as a particular phoneme becomes active, it tends to
impose iis canonical pattern of activation on the feature level. The effect
of the feedback becomes particularly strong as {ime goes on, since the
feature input only excites the feature units very briefly; the original pat-
tern of activation produced by the phoneme units is, therefore, gradually
replaced by the canonical paitern imposed by the feedback from the pho-
neme level. The result is that the pattern of activation remaining at the
feature level after 60 cycles of processing has become assimilated 1o the
prototype. In this way, feature patterns for different inputs assigned to
the same category are rendered nearly indistinguishable,

An impression of the magnitude of this effect is iHustrated in Fig. 22,
which shows how different the feature patterns of adjacent stimuii are at
the end of 60 cycles of processing. The measure of difference is simply
i~ r.p where r,, stands for the correlation of the patterns produced by
stimuli a and 5. Oaly the two dimensions which actually differ between
the canonical /g/ and /k/ are considered in the difference measure. Fur-
thermore, the correlation considers only the feature pattern on the feature
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Fio, 22. Differences between patterns of activation at the feature level at Cycle 69, for
puirs of stimuli one step apart along the /g—/k/ conlinuum used for prodacing the identifi-
cation functions shown previousiy in Fig. 21. The difference measure is the correlation of

the two patterns, subtracted from 1.0; thus, if the 1wo patterns correlated perfectly, their
difference woulid be 0.
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units in Time Slice 12, right at the center of the input specification. If all
dimensions are considered, the values of the difference measure are re-
duced overall, but the pattern is the same. Inclusion of feature patterns
from surrounding slices likewise makes little difference.

To relate the difference between two stimuli to probability correct
choice performance in the ABX task generally used in categorical per-
ception experiments, we once again use the Luce (1959 choice model.
The probabibity of identifying stimulus x with alternative a in is given
by

S&r
Sax + be

T

p(R(r o a}} ==

where §,, is the “‘strength’™ of the similarity between ¢ and x. This is
given simply by the exponential of the correlation of g and x:
S{u’ e eﬁ'r*‘a,r'

and similarly for 5;,. (The exponential transformation is required to trans-
late correlations, ranging from +1 to I, info posilive values, so that
L.uce's ratio rule can be used. The same transformation 1s used for trans-
lating activations in{o response strengths in identification tasks.) Here &,
is the parameter that scales the relation between correlations and
strengths. These assumpfiions are consistent with the choice assumptions
made for identification responses. Fhe resulting response probabilities,
for one choice of the parameter &, {5 are shown in Fig. 21 {the exponen-
tiation parameter &, 1s different than the parameter & used in generating
identification probabilities from activations because correlations and ac-
tivations are not on equivalent scales).

Basically, the figure shows that the effect of feedback is to make the
feature patterns for inputs well within each category more similar than
those for mmputs near the boundary between categories. Differences be-
tween stimuli near the prototype of the same phoneme are almost obli-
terated. When two stimuli straddie the boundary, the feature-level pat-
terns are much more distinct. As a result, the probability of correctly
discriminating stimuli within a phoneme category 1s much lower than the
probability of discriminating stimuli in different categories.

The process of “‘canonicalization” of the representation of a speech
sound via the feedback mechanism takes time. During this time, two
ihings are happening. onc is that the activations initially produced by the
speech input are decaying; another is that the feedback, which drives the
representation toward the prototype. is building up. In the simuiations,
we allowed a considerabie amount of time for these processes before
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computing similarities of different activation patterns o each other. Ob-
viously, if we had left less time, there would not have been as much of
an opportunity for these forces to operate. Thus, TRACE is in agreement
with the finding that there tends o be an increase in within-category
discrimination when a task is used which aHows subjects 10 base theiy
responses on judgments of the similarity of stimuli spaced closely to-
gether in time (Pisoni & Lazarus, 1974).

1t should be noted that it would be possible to account for categorical
perception in TRACE without invoking feedback from the phoneme level
to the feature level. All we would need to do is assume thai the {eature
information that gives rise to phoneme identification is inaccessible, as
proposed by the motor theory of speech perception (Liberman et al.,
1967}, or s rapidly iost as proposed by the ““dual-code” model (Fujisaki
& Kawashima, 1968; Massaro, 1975, 1981; Pisoni, 1973, 1975.) The dual-
code model, which has had considerable success accounting for categor-
ical perception data, assumes that phoneme idenification can be based
cither on precategorical information or on the results of the phoneme
identification process. Since it is assumedd that feature information decays
rapidiy (especially for consonant features—see below), responses must
often be based solely on the output of the phoneme identification process,
which is assumed to provide a discrete code of the sequence of phonemes.
This interpretation accounts for much of the data on categorical percep-
tion quite well. Indeed, it is fairly difficult te find ways of distinguishing
between a feedback model and one that attributes categorical perception
to a loss of information from the feature ievel coupled with a reliance on
a more abstract code. Both feedback models and dual code modcls can
accommodate the fact that vowels show less of a tendency toward cat-
ggorical perception than consonanis {Fry, Abramson, Eimas, & Lib-
erman, 1962; Pison, 1973). It is simply necessary (0 assume that vowel
feafures are more persisient than consonani features (Crowder, 1978,
1981; Fujisaks & Kawashima, 1968; Pisoni, 1973, 1975), However, the
two classes of interpretations do differ 1n one way. The feedback account
scems to differ most clearly from a Iimited feature access account in it
predictions of performance in discriminating two stimuli, both away from
the center of a category, but stil} within it. Here, TRACE tends 0 show
greater discrimination than it shows between stimull squarely in the
middie of a category.

Standard interpretations of categorical perception can account for in-
creases in diseriminability near the boundary between two categories
(where identification may in fact be somewhat variable), simply in terms
of the fact that marginal stimuli are more likely to give rise to different
category labels. But TRACE can account for increases in discriminability
at extreme values of feature continua which would not give rise to dif-
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ferent category labels. In TRACKE, the reason {or this increase in discrim-
inability is that the activation of the appropriate ifem at the phoneme
ievel is weaker, and therefore the feedback signal is weaker, than it is
when the iput occurs near the center of the category. For example,
Stimulus 1 in our simulations falls below the canonical /g/ stimulus, and
therefore activates the /g/ phoneme detector less sirongly than stimuli
closer to the canonical /g/. A similar thing happens with the /k/. This
results in less “‘canonicalization” of the extreme stimuli, and produces a
W' -shaped discrimipation function, as shown in Fig. 22.

There is some evidence bearing on this aspect of TRACE s account of
categorical perception. Samuel (1977} has reported ABX discrimination
data that show noticeable minima in the discrimination function near the
canonical stimuli within each category on a /d/~1/ continuum. Indeed,
Samuel’s account of this effect, though not couched in terms of interac-
tive activation processes, has a great deal of similarity to what we see in
TRACE; he suggests that near-canonical items are more strongly assim-
Hated to the canonical pattern. Unfortunately the effect we seek s fairly
subtie, and so it will be difficult to separate from noise. In Samuel's
experimentd, the effect is fairly clear-cut at both extremes of the VOT
continuum in three observers at the end of extensive training, as shown
in Fig. 23, and cven unpracticed subjects tend 10 show the effect toward
the high end of the VOT continuum, well past the prototype for /t/.

In summary, TRACE appears to provide a fairly accurate account of
the phenomena of cue trade-offs and caiegorical perception of speech
sounds. It accounts for categorical perception without refying on the no-
tion that the phenomenon depends on readout from an abstract level of
processing; it assumes instead that the feature level, like other levels of
the system, is subiect to feedback from higher levels which actually
changes the representation as it is being retained in memory, pushing it
toward a canonical representation of the phoneme most strongly activated
by the input.

Other Phenomena at the Phoneme Level

The Hterature on phoneme perception includes several further findings
we have not vet been able to consider in detail. The next few paragraphs
consider one of these findings and how it might be accommodated in the
TRACE model.

Effects of giobal and local context on phoneme identification. 1n our
simulations of trading relations, we have shown that the criterial value
needed on one dimension of stimulus variation can be affected by other
dimensions. Thus, when the onset of F1 s relatively high, shorter voicing
jatencies are needed to perceive a sound as unvoiced. Other factors aiso
influence the phoneme perceived as a result of a particular featural input.
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The identity of phonemes surrounding a target phoneme, the rate of
speech of a syllable in which a particular feature value occurs, as well as
characieristics of the speaker and the language being spoken all mfluence
the interpretations of features. See Repp and Liberman {1984) for a dis-
cussion of ali of these sorts of influences on the boundaries between
phonemes.

It has been suggested by Miller, Green, and Schermer (1984) and by
Repp and Liberman (1984} that these different effects may have different
sources. In particular, Miller et al. (1984) suggest that lexical effects and
semantic and syntactic influences on the one hand may be due to a dif-
ferent mechanism than influences such as speech rate and coarticulatory
mfleences due 10 local phonetic context.

The assumptions we have incorporated inte TRACE make a similar
distinction. 1a TRACE }, we have accounted for effects of phonetic con.
text by ailowing activations of units to influence the feature-to-phoneme
connections in adjacent time shices (see Eiman & McClelland, in press,
for details). In the discussion, we consider ways of extending the con-
pection modulation idea to accommeodate effects of variations in rate and
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speaker parameters. Qur main point here is that connection modulation
is quite a different mechanism than the simple additive combination of
excitatory influences that underiies the way TRACE accounts for trade-
offs among the cues to a single phoneme or for the effects of top-down
mfluences on the phoneme boundary.

Summary of Phoneme ldentification Simulations

We have considered a number of phenomena concerning the identifi-
cation and perception of phonemes. These include iexical influences on
phoneme identification, and the lack thereof, both m reaction time and
in response choice measures; “‘phonotactic rule” effects on phoneme
identification and the role of specific lexical items in influencing these
effects; the integration of muitiple cues to phoneme identity and the cat-
egorical nature of the percept that results from this integration. TRACE
integrates all of these phenomena into a single account that incorporates
aspects of the accounts offered for particular aspects of these results by
other models. In the next section, we show how TRACE can also en-
compass a number of phenomena concerning the recognition of spoken

words,

THE TIME COURSE OF WORD RECOGNITION

The study of spoken word recognition has a long history, and many
models have been proposed. Morton’s now-classic logogen model
{Morton, 1969} was the first to provide an explicit account of the inic-
gration of contextual and sensory information in word recognition, Other
models of this period (e.g., Broadbent, 1967) concentrated primarily on
effects of word frequency. Un#il the mid 1970s, however, there was little
explicit consideration of the time course of spoken word recognition.
Several studies by Marslen - Wilson and his collaborators {(Marslen-
Wilson, 1973; Marslen-Wilson & Tyler, 1975) and by Cole and his collab-
orators (Cole, 1973; Cole & Jakimik, 1978, 1980} pioneered the investi-
gation of this probiem.

Marslen-Wilson's COHORT model (Marslen~-Wiison & Tyler, 1984,

Marslen-Wilson & Welch, 1978 of enaech nercention was baced on this
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early work on the time course of spoken word recognition. The COHORT
model was one of the sources of inspiration for TRACE, for two main
reasons. First, it provided an explicit accouni of the way top-down and
hottom-up information could be combined to produce a word recognition
mechanism that actually worked in real time. Second, it agrounted for
the findings of a number of imporiant experiments demonstrating the “‘on-
ime’’ character of the speech recognition process, However, several de-
ficiencies of the COHORT model have been pointed out, as we shall see.

Because TRACE was motivated in large part by a desire to keep what
is good about COHORT and improve upon its weaknesses, we begin this
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section by considering the COHORT model in some detail. First we re-
view the basic assumptions of the model, then consider its strengths and
weaknesses, There appear to be four basic assumptions of the COHORT
mode].

1. The mode! uses the first sound {in Marsien-Wiison & Tyler, 1980,
the initial consonant chuster-plus-vowel) of the word {o deterniine which
words wili be in an imitial cohort or candidate set.

2. Once the candidate set is estabiished, the model eliminates words
from the cohort immediately, as each successive phoneme arrives, if the
new phoneme fails 10 match the next phoneme in the word. Words can
aiso be eliminated on the basis of semantic constraints, although the initial
cohort 1s assumed to be determined by acoustic input alone.

3. Word recognition occurs immediately, as soon as the cohort has
been reduced to a singie member; in an auditory lexical decision task,
the decision that an item is & nonword can be made as soon as there are
no remaimng members in the cohort.

4, Word recoganition can influence the identification of phonemes in a
word only after the word has been recognized.

There is a considerable body of data that supporis various predictions
of the COHORT model. It has been observed in a variety of paradigms
that lexical influences on phoneme identification responses are much
greater later in words than at their beginnings (Bagley, 1900; Cole and
Jakimik, 1978, 1980; Marslen-Wilson, 1980; Marsien-Wilson and Welsh,
1978). We considered some of this evidence in earlier sections. Another
important finding supporting COHORT 1s the fact that the reaction time
to decide that an ifem is a noaword 1s constant, when measured from the
occurrence of the first phoneme that rules out the last remaining word in
the cohort (Marsien-Wilson, 1980},

Perhaps the most direct suppert for the basic word recognition as-
sumptions of COHOR'T comes from the gating paradigm, tnmtroduced first
by Grosjean (1980). In this paradigm, subjects are required {o guess the
identity of a word after hearing successive presentations of the word. The
first presentation is cut off so that the subiect hears only the first N ms
{N = 30 te 50 in different studies). Later presentations are successively
lengthened in Nems mcrements until eventually the whole word is pre-
sented. The duration at which half the subjects correctly identify the word
15 calied the *‘isolation point.”” Considerably more input is required before
subjects are reasonably sure of the identity of the word; that point is
termed the “acceptance point.”” Grosjean’s initial study confirmed many
basic predictions of COHORT, though it also raised a few difficulties for
it {see below). In a more recent study using the same method, Tyler and
Wessels {1983) carried out a very ¢lose analysis of the relation between
the empirically deiermined isolation point and the point at which the input
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the subject has received is consisient with one and onfy one remaining
item, the point at which recognition would be exepected to occur in the
COHORT model. They report that the isolation point falls very close to
this theoretically derived recognition point, strongly supporting the basic
immediacy assumptions of the COHORT model.

it should be noted that the gating task is not a timed task, and so it
does not provide a direct measure of what the subiect knows as the
speech Input is unfolding. However, it is now in fairly wide use, and
Cotton and Grosjean {1984) have established that the basic patterns of
results obtained in Grosiean’s (F980) ptongering gating experiment do not
depend on the presentation of successively longer and longer presenta-
tions of the same stimulus.

A dilemma for COHORT. Though the COHORT model accounts for a
large body of data, there are several difficultics with it. We consider first
the one that seems the most serious: as stated, COHORT requires ac-
curate, undistorted information about the identity of the phonemes in a
word up to the isolation poinf. Words cannot enter into consideration
uniess the initial consonant cluster plus vowel is heard, and they are
discarded fram it as soon as a phoneme comes along that they fail to
match. No explicit procedure is described for recovering words into the
cohort once they have been excluded from it, or when the beginning of
the word is not accurately perceived due {0 noise or elision.

These aspects of COHORT make it very difficuit for the model to
explain recognition of words with distorted beginnings, such as
‘dwibbie’ (Norris, 1982), or words whose beginnings have been replaced
by noise (Salasso & Pisoni, 1985). From a computational point of view,
this makes the model an extremely brittle one; m particular it fails {o deal
with the problem of noise and underspecification which is so crucial for
recoganition of real speech (Thompson, 1984).

The recognizability of distorted items hke “dwibbie’” might be taken
as suggesting that what we need to do is liberalize the criterion for en-
tering and retaining words in the cohort, Thus, the cohort could be de-
fined as the set of words consistent with what has been heard or mild
(e.g., one or two features) deviations from what has been heard. This
would allow mild distortions like replaciag /i¥ with /w/ not to disqualify
a word from the cohort. It would also allow the model to cope with cases
where the beginning of the word is underspecified; in these cases, the
initial cohort would simply be larger than in the case where the input
clearly specified the initial phonemcs,

However, there is still a problem. Sometimes we nced 10 be able to
rule out items which mismatch the input on one or two dimensions and
sometimes we do not. Consider the items “*pleasant’™ and “blaceiet.” In
the first case, we need to exclude “‘present’” from the cohort, so the
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stight difference between /i/ and /17 must be sufficient to rule it cut; in the
second case, we do not want o jose the word “bracelet,” since it pro-
vides the best fit overall to the input. Thus, in this case, the difference
between /I and /r/ must not be allowed to rule a word candidate out.

This the dilemma: on the one hand, we want a mechanism that will be
able to sefect the correct word as soon as an undistoried input specifies
it uniguely, to account for the Tyler and Wessels results. On the other
hand, we do not want the model to completely eliminate possibilities
which might later turn out 1o be correct. We shall shortly see that TRACE
provides a way out of this dilemma.

Ancther problem for COHORT. Grosjean (1985) has recently pointed
out another problem for COHORT, namely, the possiinlity that the sub-
ject may be uncertain aboui the location of the beginnimg of each suc-
cessive word. A tacit assumption of the model is that the subject goes
mio the beginning of each word knowing that it is the beginning. In the
reiated model of Cole and Jakimik (19800 thas assumption s made exphicit.
Unfortunately, it is not always possibie o know in advance where one
weord starts and the next word ends. As we discussed in the introduction,
ACOUSHIC cucs 1O Juncture are not always reliabie, and in the absence of
acoustic cues, even an optimally efficient mechamsm cannot aiways
know that it has heard the end of one word until i hears enough of the
next 1o rule out the possible continuations of the first word.

What is needed. then. is 1 mode! that can account for COHORT's
successes, and overcome these two important deficiencies. The next two
sections show that TRACE does guite well on both counts. The first of
these sections examines TRACE's behavior in processing words whose
beginnings and endings are clearly deliniated for it by the presence of
stience, The sccond considers the processing of multiword inputs, which
the model must parse for itself.

One Word ar a Time

in this section we sec how TRACE resolves the dilemma facing CO-
HORT, in that it is immediately sensitive to new information but is stll
able to cope with underspecified or distorted word beginnings. We also
consider how the madel accounts for the preference for short-word re-
sponses early in processing a long word. The section concludes with a
discussion of ways the model couid be extended to account for word
frequency and contextual influences.

Competition vs bottom-up inhibition. TRACE deais with COHORT s
dilernma by using competition, rather than phoneme-ta-word inhibition.
The essence of the idea is simply this. Phoneme units have excitatory
connections {0 all the word units they are consistent with, Thus, when-
ever a phoneme becomes aciive in a particular slice of the Trace, if sends
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excitation to all the word units consistent with that phoneme in that slice.
The word umis then compete with cach other; items that contain each
successive phoneme dominate all others, but if no word maiches per-
fectly, a word that provides a close fit to the phoneme sequence can
eventaully win out over words that provide less adequate matches, The
exact metric of ‘closeness of fit’" depends, of course, on a large number
of detaiis. In the absence of such a metric, a simple count of the number
of acoustic features differing between a lexical item and a presented stim-
ulus can provide a useful first approximation, but other factors such as
stress, Jocation of differences within the word, and discriminability of the
differing features wiil of course come into play.

Consider, from this point of view, our two items “"pleasant”” and “*blace-
let’” again. In the first instance. '"pleasant” will recetve more bottom-up
excitation than “‘presest,” and so will win out in the competition. We
have aiready seen, in our analysis of categorical perception at the pho-
neme level, how even slight differences in initial boftom-up excitation can
be magnified by the joint effects of competition and feedback. But the
real beauty of the competition mechanism is that this action is contingent
on the activation of other word candidates. Thus, in the case of “'blace-
let’’, since there is no word “‘blacelet,”” “*bracelet’” wiil not be sup-
pressed. Inftially, if 18 true, words like ““blame’ and ““blatant’ wiil tend
1o dominate “braceiet.”” bui since the input matches “‘braceiet”’ betier
than any other word, “*bracelet” will eventually come to dominate the
other possibilities.

This behavior of the model is lusirated using examples from its re-
stricted lexicon in Fig. 24, In one case, the input is “'legal,’"and the word
“regal’ is completely dominated by “‘legal.” In the other case, the input
is “'lugged,’” and the word “rugged’” eventually dominates, because there
is no word “‘lugged’’ (pronounced to rhvme with “rugged’ —the word
“lug” is not in the model’s Iexicon}. Here “‘rugged’” must compete with
other partial matches of 'lugged,”” of course, and it is less effective in
this regard than it would be if the input exactly matched it, but it does
win ouf in the end.

It should be noted that the details of what word will be most strongly
activated in such cases depend on a number of factors, including, in
particular, the distinctiveness of mismatching phonemes. Also, it is pos-
sible to find cases in which a word that correctly spans a part of a longer
string dominates a longer word that spans the whole string but misses
out on a phoneme in one place or another. An item like “'vigoretie” may
or may not be a case in point. In such ¢ases, though, the most important
thing might not turn out {0 be winning and losing, but rather the fact that
both tend to stay in the game. Such neologisms can suggest a poetic



TRACE MODEL

RV ey Hie=i
T fo} £
LA
0 gt
.1 1y & _:%g“l-“
: -
19
-
r
L a N -
U i - r
—lig-i~ “lag~t- -big-~1~ +2
3
_i T ~ -1 " ~d
" E” - g
Koy ke
ak 5 k
- a e
3 & . b
1l ep e wieogede cieaede +E

Fi;. 24. State of the Frace at two points during processing of “legal’” and “lugged.””

57

conjunction of meanings, if used just right: “‘He walked briskly down the
streef, puffing his vigoretfe.™

Time course of word recognition in TRACE. So far we have shown
how TRACE overcomes a dificulty with the COHORT model in cases
where the beginning of a word has been distorted. Ia earlier sections on
phoneme processing, some of the simulations illustrate that the model is
capable of recognizing words with underspecified (i.e., ambiguous} initial
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phonemes. In this section, we examine how weil TRACE emulates the
COHORT model, in cases where the input is an undistorted representa-
fion of some particular word, In particular, we wanied 10 sec how close
TRACE would come to behaving in accord with CGHORT s assumption
that incorrect words are dropped from the cohort of active candidates as
soon as the input diverges from them.

To examine this process, we considered the processing of the
word “‘product” (/prad’ct/}. Figure 25 shows the state of the Trace at
various points in processing this word, and Fig. 26 shows the response
strengths of several units relative to the strength of the word “product™
itself, as a function of time relative to the arrival of the successive pho-
nemes in the input. In this figure, the response strength of “‘product” is
simply set to 1.0 at each time slice and the response strengths of units
for other words are plotted in terms of the ratio of their strength, divided
by the strength of “*product.”” The curves shown are for the words ““trot,”
“possible,’” priest,”” “‘progress,’’ and “produce’’; these words differ
from the word “‘product” (according to the simulation program’s stress-
less encoding of them!) in the ist, 2nd, 3¢, 4th, and 3th phoncmes, re-
spectively, Figure 26 shows that these items begin to drop out of “"¢con-
iention”” just after each successive phoneme comes in. Of course, there
is nothing hard and fast or absolute about dropping a candidate in
TRACE. What we sec instead is tha! mismatching candidates simpiy
begin to fade as the input diverges from them in favor of some other
candidate. This is just the kind of behavior the COHORT model would
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Fi. 26, Response strengths of the units for several words relative to the response strength
of the unit for “product” (prad ki), as a fonction of time relative 10 the peak of the firg
phoneme that fails to match the word. The successive curves coming off of the horizontal
line representing the normalized response sirength of “'product™ are for the words “irot,”
“possible,’” Upriest.” Tprogress,” and Uproduce, respectively. In our lexicon they are
rendered as Arat/, /pas ™V, /prist/, /pragr'sf, and /pradus/, respeciively.

produce in this case, though of course the drop-off would be assunmed to
be an abrupt, discrete event.’

There is one aspect of TRACE s behavior which differs from that of
COHORT: among those words that are consistent with the input up to a
particular point m time, TRACE shows a bias in favor of shorter words
over fonger words. Thus, “priest” has a siight advantage before the /a/
comes in, and “‘produce’’ Is well ahead of ‘produet’™ untii the //comes
in {in phonemes, “‘produce’ 1s one shorter than *‘product™).

This advantage for shorter words is due to the competition mechanism.
Recall that word unifs compete with cach other in proportion to the
overfap of the sets of time slices spanned by each of the words, Overlap
is, of course, symmetrical, so long and short words inhibit each other to
an equai extent. But longer words suffer more inhibition from other long
words than short words do. For example, “*progress’” and “‘probable”
mhibit “"product’ more than they inhibit “priest™ and “‘produce.”” Thus,
units for longer words are generaily subjected to extra ishibition, partic-
ularly early on when many candidates are active, and so they tend to
suffer in comparison to short words as a result.

*Fhe data reported by Tyler and Wessels actually appears to indicate an even imore
immediate drop-off than is seen in this simulation. However, it shouid be remembered that
the curves shown in Fig. 26 arg oa-line response strepgth curves. and thus reflect the lags
inherent in the percolation of input from the feature 10 the word level, The gating task. on
the other hand, does not reguire subjects lo respond on-line. If the input is simply turned
off at the peak of each phoneme™s input specification, and then allowed to run free for a
few cycles, the dropont point shifts even earlier.
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We were at first somewhat disturbed by this aspect of the model’s
behavior, but it turns out to correspond guite closely with results obtained
in experiments by Grosjean (1980) and Cotton and Grosjean (1984) using
the gating paradigm. Both papers found that subjects hearing the begin-
nings of words like “‘captain” tended to report shorter words consistent
with what they had heard (¢.g., “*cap’”). However, we should observe
that in the gating paradigm, when the word “‘captain’™ is truncated jus!
after the /p/, it will sound quite a bit like “‘cap” followed by silence. In
TRACE, this sitence would activate silence units at the phoneme and
word levels, and the word-level silence units would compete with units
for words that extend into the silence. It will reinforce the preference of
the model for short-word interpretations, because the deteciion of the
silence will inhibit the detector for the longer word. Thus, there arc ac-
tually two reasons why TRACE might favor short-word interpretations
over fong-word interpretations in a gating experiment. Whether human
subjects show a residual preference for shorter interpretations over longer
ones in the absence of a following silence during the course of processing
is not yvet clear from available data,

We should pomt out that the experimemial literature mndicates that the
advantage of shorter words over fonger ones holds only under the special
circumstances of gated presentation and then only with early gates, when
shorter words are relatively more complele than longer ones would be.
It has been well known for a long time that longer words are generally
more readily recognized than shorter ones when the whole word is pre-
sented for identification against a background of aoise (Licklider &
Miller, 1951). Presumably, the reason for this is simply that longer words
generally provide a larger number of cues than shorter words do and
hence are simply less confusable,

Frequency and context effects. There are, of course, other factors
which influence when word recogmtion will occur beyvond those we have
considered thus far. Two very important ones are word frequency and
contextual predictability. The literature on these {wo factors goes back
to the turn of the century (Bagley, 1960). Morton's (1969} logogen model
effectively deals with several imporiant aspects of this huge literature,
though not wath the time course of these effects.

We have not ye! included either word frequency or higher level con-
textual influences in TRACE, though of course we believe they are im-
portant. Word frequency effects could be accommodated, as they were
in the interactive-activation model of word recognition, in terms of van-
ation i the resting activation level of word units, or in terms of variation
in the strength of phoneme-to-word connections, Contextual influences
can be thought of as supplying activation to word units from even higher
levels of processing than the word level. In this way, basic aspects of
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these two kinds of influences can be captured. We leave it to future
research, however, to determine te what extent these elaborations of
TRACE would provide a detailed account of the data on the roles of
these factors. For now, we turn to the problem of determining where one
word ends and the next one begins.

Lexical Basis of Word Segmentation

How do we know when one word ends and the next word begins? This
is by no means an easy task, as we noted in the introduction. To recap
our earlicr argument, there are some cues in the speech stream, but as
several investigators have peinied out (Cole & Jakimik, 1980; Grosjean
& Gee, 1984; Thompson, 1984}, they are not always sufficient, pariicu-
larty in fluent speech. It would thus appear that there is an important role
for lexical knowledge to play in determining where one word ¢nds and
the next word begins. as well as in identifying the objects that result from
the process of segmentation. Indeed, as Reddy (1976) has suggested,
segmentatton and ideptification may be joint resuits of the mechanisms
of word recognition.

Cole and Jakimik (1980} discuss these points and present evidence that
semantic and syntactic context can guide segmeniation in cases where
the lexicon is consisient with two readings ('car go™” vs “‘cargo’’}. Our
present model lacks syntactic and semantic fevels. so it cannot make use
of these higher level constraints; but it can make use of its knowledge
about words, not only 1o ideatify individual words in iselation, but fo
pick out a sequence of words in continuous streams of phonemes. Word
identification and segmentation emerge together from the interactive-ac-
tivation process, as part and parcel of the process of word actlivation.

This section considers several aspects of the way in which word seg-
mentation emerges from the interactive-activation process, as observed
m simulations with TRACE 11. Before we constder these, 1t 15 worth
recaliing the details of some of the assumptions made about the bottom-
up activation of word units and about competitive inhibition between word
units, First, the extent to which a particular phoneme excites a particulay
word anmf is independent of the length of the word. Second, the extem
to which a particular word unit inhibits another word unit is proportional
to the temporal overlap of the two word units. This means that words
which do not overlap in time will not inhibit each other, but will gang up
on other words that partially overlap each of them. These {wo assump-
tions form most of the basis of the effects we observe in the simuiations.

The boundary is in the ear of the “behearer.”” First, we consider the
basic fact that the number of words we hear in a sequence of phonemes
can depend on our knowledge of the number of words the sequence
makes. Consider the two utterances, “she can’t’’ and "‘secant”. Though
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we can say either Hem in a way that makes it sound like a single word
or like two words, there is an intermediate way of saying them so that
the first secems {0 be two words and the second seems like only one.

To see what TRACK 1§ would do with single- and multiple-word inputs,
we ran simulation experiments with each individual word in the main 211-
word lexicon preceded and followed by silence, and then with 211 pairs
of words, with a silence at the beginning and at the end of the entire
stream. The pairs were made by simply permuting the lexicon twice and
then abutiing the two permatations so that each word occurred once as
the first word and once as the second word in the entire set of 211 paws.
We stress, of course, that real speech would tend to contain cues that
would mark word boundaries in many cases; the experiment is simply
designed to show what TRACE would do in cases where these cues are
lacking.

With the individual words, TRACE made no mistakes-that is, by a
few shces after the end of the word, the word that spanned the entire
input was more strongly aclivated than any other word. An example of
this is shown using the iem /parti/ in Fig. 27. The stream /parti/ might be
either one word (‘party’”) or two (“par tea’’ or “par tee’—the model
knows of only one word pronounced /ti/). At early poinis in processing
the word, "‘par’”’ domipates over “‘party’’ and other fonger words, for
reasons discussed in the previous section. By the time the model has had
a chance to process the end of the word, however, “‘party”’ comes io
dominate.

Why does a single longer word eventually win out over two shorter
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Fig. 27, The state of the Trace &t various points during processing of fpartif.
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ones in TRACE? There are two main reasons. First of all, a longer word
eventually receives more bottom-up support than either shorter word.,
simpiy because there are more phonemes activating the longer word than
the shorter word. The second reason has to do with the sequential nature
of the input. In the case of /parti/, by the time the /ti/ is coming in, the
word “party’ Is weli enough established that it keeps /¢ from getiing as
strongly activated as it would otherwise, as liustrated 1n Fig. 27. This
behavior of the modef feads to the prediction that short words embedded
in the ends of longer words shouid not get as strongly activated as shorier
words coming eariier in the longer word. This prediction could be tested
using the gating paradigm, or a cross-modal priming paradigm such as
the one used by Swinney {1982).

However, it should be noted that this aspect of the behavior of the
model can be overridden if there is bottom-up information favoring the
two-word interpretation. Currently, this can only happen in TRACE
through the insertion of a brief silence between the “*par’’ and the ““fea.”’
As shown In Fig. 28, this results in “par’” and *‘tea” dominating afl other
word candidates.

What happens when there is no long word that spans the entire stream,
as in /barti/? In this case, the model setties on the two-word interpretation
“bar tea,”’ as shown in Fig. 28. Note that other words, such as “art,”
that span a portion of the input, are less successful than either “'bar” or
“tea.”” The reason is that the interpretafions “har’” and “art’ overlap
with each other, and ""art’” and “‘tea’” overlap with each other. buf “'bar”

Bartii} in & £t

{£.3

{=t =

s tr

4 ¥ —
Mparti Par 1 ubarll _Bar i

- - p -
- ~~ . -~

-parti- +3 ~par—-ti-+3 wharti— +3 ~parki—- +3

Fuy 28, State of the Trace after processing the streams /paril!, /par-ti, /barty, and /parki/.
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and “tea’” do not overlap. Thus, “art” receives inhibition from both
“bhar” and “‘tea,”” while “‘bar’” and "‘tea” each receive inhibition only
from "‘art.”’ Thus two words that do not overlap with each other can
gang up on a third each overlaps with partly and drive it out.

These remarkably simple mechagnisms of activation and competition do
a very good job of word segmentation, without the aid of any syllabifi-
cation, stress, phonetic word boundary cues, or semantic and syntactic
constraints. In 189 of the 211 word pairs tested in the simulation exper-
iment., the model came up with the correct parse, in the sense that no
other word was more active than either of the two words that had been
presented. Some of the faitures of the model occurred in cases where the
input was actually consistent with two parses, either a loager spanning
word rather than a singie word {as in ""party’’} or a different parse into
two words, as in 'part rust’ for “par trust.”” In such cases TRACE tends
to prefer parses in which the longer word comes first, There were. how-
ever, some cases in which the model did not come up with a valid parse,
that is, a patiern that represents complete coverage of the input by a set
of nonoverlapping words. For example, consider the input /parki/.
Though this makes the two words “‘par’” and “‘key,” the word “"park”
has a stronger activation than either “‘par’” or “key.”” as ijlustyated in
Fig. 28,

This aspect of TRACE I1's behavior indicates that the present version
of the model is far from the final word on word segmentation, A complete
model would also exploit syllabification, stress, and other cues to word
identity to help eliminate some of the possible interpretations of TRACE
II's simple phoneme streams, The activation and competition mecha-
aisms in TRACE 1 are sufficient to do quite a bit of the word segmen-
tation work, but we do not expect them 1o do this perfectly in all cases
without the aid of other cues.

Some readers may be troubled by a mechanism that does not insist
upon a parse in which each phoneme is covered by one and only one
word. Actually, though, this characteristic of the model is often a virtue,
since in many cases the last phoneme of a word maust do double duty as
the first phoneme of the next, as in ““hound dog’’ or *‘brush shop.”” While
speakers tend to signal the doubling in careful speech, the cues to single
vs doubie consonants are not always sufficient for disambiguation, as is
clear when strings with muitiple interpretations are used as stimuli. For
example, an utterance intended as “'no notion”” will sometimes be heard
as “‘known notion”’ (Nakatani & Dukes, 19773, The model is not inciined
{0 suppress activations of partially overlapping words, ¢ven when a non-
overiapping parse 1s available. This behavior of TRACE is Hiustrated with
/bstap/ (“bus top™ or “bus stop’'} in Fig. 29, In this case, higher levels
could provide an additional source of information that would help the
model choose between overlapping and nonoverlapping interpretations.
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FiG. 29, State of the Trace af the end of the streams /bustap/ {"bus stop™ or “bus top™)
and /bruSap/ (""brush shep''h.

The simulations we have reported show that the word activation/com-
petition mechanism can go a long way toward providing a complete in-
terpretation of the input stream as a sequence of words. As a word is
beginning {0 come in, the mode! tends to prefer shorter words consistent
with the mput stream over longer ones. As the input unfolds through
time, however, the model tends to prefer to interpret streams of pho-
nemes as single longer words rather than as a sequence of short words;
and it tends to find parses that account for each phoneme once. Buf it
does not insist upon this, and will occasionaily produce an interpretation
that leaves part of the stream of phonemes unaccounted for or which
accounts for part of the stream of phonemes twice. Often ¢nough, it will
also leave an alternative to its “'preferred parse’™ 1 a strong position, so
that both the preferred parse and the alternative would be available to
higher levels and subject to possible reinforcement by them.

Thus far in this section, we have considered the general properties of
the way in which TRACE uses lexical information to segment a speech
stream into words, but we have not considered much in the way of em-
pirical data that these aspects of the model shed hght on. However, there
are two findings in the literature which can be interpreted in accordance
with TRACE’s handling of multiword speech streams.

Where does a nonword end? A number of investigators {e.g.. Cole &
Jakimik, 1980} have suggested that when one word is identified, its iden-
tizy can be used to determine where it ends and thercfore where the next
word begins, In TRACE, the interactive activation process can often
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establish where & word will end even before it actually does end, partic-
ularly in the case of longer words or when activations at the word level
are alded by syntactic and semantic constraints, However, it is much
harder to establish the end of a nonword, since the fact that it is a non-
word means that we cannot exploit any knowledge of where it should
end o do so,

This fact may account for the finding of Foss and Blank {1980} that
subjects are much slower to respond o target phonemes at the beginning
of a word preceded by & nonword than at the beginning of a word
preceded by a word. For example, responses to detect word initial /d/
were faster in stimult like the following:

At the end of iast year, the government decided |, | .

than they were when the word preceding the target (in this case govern-
ment) was replaced by a nonword such as “gatabont.”” It should be noted
that the targeis were specified as word-ipitial segments. Therefore, the
subjects had not only to identify the target phoneme, they had to deter-
mine that it fell at the beginning of a word, as well, The fact that reaction
times were faster when the farget was preceded by a word suggests that
subjects were able to use their knowledge of where the word “'govern-
ment” ends to help them determine where the next word begins.

An example of how TRACE allows one word to help establish where
its successor begins 1s iliustrated in Fig. 30. 1s the example, the modei
recetves the stream ‘‘possible farget™ or “‘papusie target,’” and we
imagine that the target is word-inttial /t/. In the first case, the word “‘pos-
sible’ is clearly established and competitors underneath it have been
completely crushed by the time the initial /¢/ in “target”” becomes active
at the phoseme level (second panel in the upper part of the figure), so
there is no ambiguity about the fact that this /t/ is at the beginning of the
next word. (The decision mechanism would, of course, be reguired {0
note that the model had established the location of the end of the
preceding word. We bave not yetf incorporated explicit assumptions about
how this woulid be done.) In the second case, words beginning and ending
at a number of different places, including some that overlap with the
location of the /t/, are partly activaied. Thus, the subject wouid have 1o
wail until he is well into the word “‘target’” before it becomes clear that
the first /t/ in target is in fact a word-initial /t/,

In reality, the situation is probably not as bieak for the perceiver as it
appears in this example, because in many cases there will be cues in the
manner of pronunciation and the syllabification of the input that will help
to indicate the location of the word boundary. However, given the im-
precision and frequent absence of such cues, it is not surprising that the
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Fig, 30. State of the Trace at severa! points during the processing of “possible target’ " and

“pagusie target.

lexical status of one part of a speech stream plays an important role in
determining where the beginning of the next word must be.

The long and short of word identification. Ope problematic feature of
speech is the fact that it is not always possible to identify a word un-
ambiguously until one has heard the word after i, Consider, for example,
the word "“tar.”’ If we are listening t0o an utterance and have gotten just
to the /v/ in **The man saw the tar box,” though “'tar” will tend to he
the preferred hypothesis at this point, we do ot have enough information
10 say unequivocally that the word “‘tar’ will not turn out to be ““target”™
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or ““tarnished”’ or one of several other possibilities. It is only after more
time has passed, and we have perceived cither a silence or enough of the
next word {0 rule out any of the coniinuations of /tar/, that we can decide
we have heard the word ‘‘tar.”” This situation, as it arises in TRACE
with the simpie utterance /arbaks/ ('tar box™") is illustrated in Fig. 31.
Though “"tar’” i1s somewhal more active than the longer word “‘target”’
when the /17 15 coming in, if is only when the word “‘box’” cmerges as
the interpretation of the phonemes following ““tar’’ that the rival "target”
finaly fades as a serious coatender.

With longer words the situation is different. As we have already seen
in another example, by the time the end of a longer word is reached it is
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FiG. 31. State of the Trace at several points in progessing “far box'” and “guitar box.™
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much more likely that only one word candidate will remain. Indeed, with
longer words H is often possible to have enough information fo identify
the word unambiguouslty well before the end of the word. An illustration
of this situation is provided by a simulation using the utterance “‘guitar
box’' fg'tarbaks/. By the time the /if has registered, ““guitar’” is clearly
domipant at the word level, and can be unambiguously identified without
further ado,

Recently, an experiment by Grosiean {1985} has demonstrated these
same effects empiricaily. Grosiean presented subjects with long or short
words followed by a second word and measured how much of the word
and its successor the subject needed 1o hear to identify the target, With
longer words, subjects could usualiy guess the word correctly weli before
the end of the word, and by the end of the word they were quite sure of
the word’s identity. With monosyllabic words, on the other hand, many
of the words could not be identified correctly until well into the next
word. On the average, subjects were not sure of the word's dentity until
about the end of the next word, or the beginning of the one afier. As
(rogjean (1985) points oul, a major reason for this is simply that the
spoken input often does not uniquely specify the identity of a short word.
In such cases, the perceptual system is often forced to process the short
word, and its successor, at the same time.

Recognizing the words in a short sentence. One last example of
TRACE 1Ps performance in segmenting words is illustrated in Fig. 32
The figure shows the state of the Trace at several points during the pro-
cessing of the stream /Si5°¢"baks/. By the end, the words of the phrase
“She shut a box,”” which fits the input perfectly with no overlap. domi-
nate ali others.

This exampie illustrates how far it is sometimes possible to go in
parsing a stream of phonemes into words, without even considering syn-
tactic and semantic constraints, or stress, syllabification, and juncture
cues to word identification. The example also illustrates the difficuity the
medel has in perceiving shori, unstressed words like *‘a’'. This is, of
course, just an extreme version of the difficulty the model has in pro-
cessing monosyllabic words like “'tar,” and is consistent with Grosjean’s
data on the difficulty subjects have with identifying shert words. In fact,
Grosjean and Gee (1984) report pilot data indicating that these difficulties
ar¢ even more severe with function words fike a2’ and “"of " It should
be noted that TRACE makes no special distinction between content and
function words, per se, and neither do Grosjean and Gee. However, func-
tion words are usually unstressed and considerabiy shorter than content
words, Thus, it 15 not necessary to point {0 any special mechanisms for
closed versus open class morphemes to account for Grosjean and Gee's
results.
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Summary of Word Identification Simulations

While phoneme identification has been studied for many vears, data
from on-line studies of word recognition is just beginning to accumulate,
There is an older literature on accuracy of word identification in noise,
but it has only been quite recently that useful techniques have been de-
veloped for studying word recognition in real time.

What evidence there is, though indicates the complexity of the word
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idengification process. While the word identification mechanism s sen-
sitive to each new incoming phoneme as if arrives, if is nevertheless
robust encugh lo recover from underspecification or distortion of word
beginnings. And it appears {0 be capable of some simuitaneous processing
of successive words in the input stream. TRACE appears to capture these
aspects of the tme course of word recognition. In these respects, 1 im-
proves upon the COHORT model, the only previousiy extant model that
provides an explicit account of the on-line process of word recognition.
And the mechanisms it uses to accompiish this are the same ones that it
used for the simulations of the process of phoneme identification de-
scribed in the preceding section,

GENERAL DISCUSSICN
Summary of TRACE's Successes

In this article, we have secen that TRACE can account for a number of
different aspects of human speech perception. We begin by listing the
major correspondences between TRACE and what we know about the
human speech understanding process.

i. TRACK, hike humans, uses information from overlapping portions
of the speech wave 1o identify successive phonemes.,

2. The model shows a tendency toward categorical perception of pho-
nemes, as ¢o human subjects. The model’s tendency toward categorical
perception s affecied by many of the same parameters which affect the
degree of categorical perception shown by human subjects: in particular,
the extent to which perception will be categorical increases with fime
between stimuli that must be compared.,

3. The model combines feature information from a number of different
dimensions, and exhibits cue trade-offs in phoneme identification. These
characteristics of human speech perception have been demonstrated in a
very large number of studies.

4. The model augments information from the speech stream with feed-
back from the lexical level in recaching decisions about the identity of
phonemes. These lexical influences on phoneme identification occur in
conditions simifar to those in which iexical effects have been reported,
but do not occur in conditions in which these effects have not been ob-
tained.

3. Like human subjects, the model exhibits apparent phonotactic rule
effects on phoneme identification, though it has no explicit representation
of the phonotactic rules. The tendency to prefer phonotactically regular
interpretations of ambiguous phonemes can be overridden by particular
fexical items, just as it can in the human perceiver.

6. 1n processing unambiguous phoneme seguences preceded by si-
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lence, the model exhibits immediate sensitivity to information favoring
one word mterpretation over another. ¢ shows an initial preference for
shorter words relative to longer words, but eventually a sequence of
phonemes that matches a long word perfectly will be identified as that
word, overturaing the initial preference for the short-word interpretation.
These aspects of the model are consistent with human data from gating
experiments.

7. Though the model is heavily influenced by word beginnings, if can
recover from underspecification or distorfion of a word’s beginning.

8. The model can use its knowiedge of the lexicon to parse sequences
of phonemes into words, and to establish where one word ends and the
next one begins when cues to word boundarnies are jacking.

9. Like human subjects, the model sometimes cannot identify a word
untii it has heard part of the next word. Also like human subjects, it can
better determine where a word will begin when it is preceded by a word
rather than a nonword.

10. The model does not demand a parse of & phoneme sequence that
includes each phoneme in one and oniy one word. This allows it to cope
gracefuily with elision of phonemes at word boundanes. 1t will often
permit several alternative parses 10 remain available for higher level in-
fluences to choose among.

In addition to these characteristics observed in the present paper, our
simulations with TRACE 1 show several further correspondences be-
tween the model and human speech perception. Most important of these
is the fact that the mode! is able to use activations of phoneme units in
one part of the Trace to adjust the connection strengths determining which
features will activate which phonemes in adjacent parts of the Trace. In
this way the model can adjust as human subjects do to coarticulatory
influences on the acoustic properties of phonemes ¢Fowler, 1984; Mann
& Repp, 19803,

There is, of course, more data on some of these points than others. It
will be very interesting to see how well TRACE will hold up against the
data as further empirical studies are carried out.

Some of the Reasons for the Successes of TRACE

To what does the TRACE model owe its success in simuiaiing human
speech perception? Some of TRACE's successes simply depend on its
ability 1o make use of the information as it comes it. For exampie, it fails
to show context effects only when a response must be made, or ¢an be
made with high accuracy, before contextual information is available.

There are several other reasons for TRACE s success. One, we think,
is the use of continueus activation and competiiion processes in place of
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discrete decisive processes such as segmentation and labeling. Activation
and competition are matters of degree and protect TRACE from cata-
strophic commitment in marginal cases, and they provide a natural means
for combining many different sources of information. Of course, this fea-
ture of the model is shared with several other models (¢.g.. Morton, 1969;
Oden & Massaro, 1978), though only Nusbaum and Slowiaczek {§982)
have previously incorporated these kKinds of assumptions in a model of
the time course of word recognition.

Part of the success of TRACE is specifically due o the use of com-
peiitive inhibltory interactions instead of bottom-up {or top-down) inhi-
bition. Competition aliows the model to select the best interpretation
avatlable, settling for an imperfect on¢e when no betier one 15 available,
hut overriding poor ones when a good one 1s at hand. These and other
virtues of competitive infubition have been noted before (e.g., Feldman
& Ballard, 1982; Grossberg, 1973; Levin, 1976; Ratliff, 1965; von Bekesy,
1967} 1n other contexts. Their usefulness here attests to the general utility
of the competitive inhibition mechantsm.

The elimination of between-level inhibition from the interactive acti-
vation mechanism puis us In a very nice position with respect to one
general ¢ritique of interactive-activation models. 1f is often said that ac-
tivation models are too unconstrained and too flexible to be anything
more than a language for conveniently describing information processing.
We are now in a position to suggest that a restricted version of the frame-
work Is not only sufficient but superior. Interactive-activation modeis
could e¢xploit doth excitatory and inhibitory connections both between
and within levels, but in the original interactive-activation model of letier
percepiion, oniy inhibifory interactions were allowed within a level. In
more recent versions of the visual model (McClelland, 1985, 1988},
and in TRACE., we have gone even further, aflowing only excitatory
connections between levels and only inhibitory connections within levels.
From our experience, # appears that models which adhere to these con-
strainis work as well as or better than members of the more general class
that do not, We hasten to add that we have no proof thai this is true. We
have, however, no reason fo feel that we could imiprove the performance
of our mode] by allowing cither between-level inhibitory interactions or
within-fevel excitation.

Other aspects of the successes of TRACE depend on its use of feedback
from higher to lower levels. Feedback plays a central role in the accounts
of categorical perception, lexical effects on pheneme wdentification, and
“phonotactic rule”” effects.

We do not claim that any of these phenomena, taken individually, re-
guire the assumption of a feedback mechanism. For exampie, consider
the phenomenon of categorical perception, We use feedback from the
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phoneme 1o the feature level to drive feature patterns closer to the pro-
totype of the phoneme they most strongly activaie. This mechamsm,
coupled with the competition mechanism at the phoneme level, accounts
for better discrimination between than within categories. However, we
could account for ¢ategorical perception by suggesting that subjects do
not have access to the acoustic level at ali, but only to the results of the
phoneme identification process, Similarly, lexical effects on phoneme
wdentification can be accounted for by assuming that subjects (sometimes)
read out from the word tevei and infer the identity of phonemes from the
lexical code (Marslen-Wiison, 1980; Marslen-Wilson & Weish, 1978;
Morton, 1979}, {n the case of ““phonotactic rule™ effects, other interpre-
tations are of course available as well. One could, for example, simply
suppose that subjects use knowledge of the phonotactic constraints. per-
haps captured in units standing for jegai phoneme pairs, and that it is the
output of such units that accounts for the influence of phonotactic reg-
ularity on phoneme identification.

We know of no single convincing empirical reason to prefer feedback
accounts to other possibilities. However, we have two theoretical reasons
for preferring to retzin {op-down as well as boftom-up interactions in our
activation models. One reason has to do with the simplicity of the re.
sulting decision mechanisms. Feedback allows higher level considerations
to influence the outcome of processing at lower levels in just the same
way that lower level considerations influence the oulcome of processing
at higher levels. The influences of lexical and other constraints on pho-
neme dentification necd not be pushed out of the theory of speech per-
ception itself into decision processes, but are integrated directly into the
perceptual process in a2 unified way. Given top-down as well as bottom-
up processing, the decision mechanisms regquired for generating overt
responses that reflect iexical and other contextual influences are greatly
simplified; no special provision needs {¢0 be made for combining lexical
and phonetic outputs in the decision mechanism.

A second reason for retaining feedback comes up when we consider
the problem of learning. Although we have not discussed how learning
might occur in TRACE, we have assumed that the mechanisms of speech
perception are acquired through modification of connection strengihs.
Very roughly, in many learning schemes, connections between units are
sirengthened when two units tend to be activated simultancously, at the
expense of connections between units that tend not to be activated at the
same time {cf. Grossberg, 1978; Rosenblatt, 1962; Rumelhart & Zipser,
1985}, In such schemes, however, there is a serious problem if activation
is entirely botiom.up; for in that case, once a particular unit has been
“tuned’ to respond {0 a particular patfern, it is difficuit to retune it #t
fires when its “expected’’ pattern 1s presented, and when it fires, s
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tendency to respond to that pattern only increases. Feedback provides a
way to break this vicious cycle. If higher levels insist that a particular
phoneme is present, then the unit for that phoneme can become activated
even if the bottom-up input would normaily activaie some other phoneme
instead; then the learning mechanism can "'retune” the detector for the
phoneme so that it will need to depend less on the top-down input the
next time around.

In generzl, the use of feedback appears o place more of the intelligence
required for perception and percepiual learning into the actual perceptual
mechanism itself, and to make the mechanisms which exhibit this intei-
ligence expiicit. As Formulated here, these mechanisms are incredibly
simpie; vet they appear to buy quite a lot which often gets pushed into
unspecified ““decision’ and ‘“‘posiperceptual guessing'’ processes {(¢.g.,
Forster, 1976},

Finally, the success of TRACE alse depends upon its architecture,
rather than the fundamental computational principles of activation and
competition, or the decision fo include feedback. By architecture, we
mean the organization of the Trace structure info layers consisiing of uniis
corresponding fo items occurring at particular times within the atterance.
As we noted in the introduction, this architecture 1s one we decided upon
only after several other kinds of architecture had failed.

There are three principle positive consequences of the TRACK archi-
tecture. First, it keeps straight what occurred when in the speech stream.
Competition occurs only between units competing to represent the same
nortion of the input stream. Multiple copies of the same phoneme and
word units can be active at the samg time without producing confusion.
Furthermore, the architecture permits the same competition mechanism
that chooses among alternative word interpretations of a single-word ut-
terance {0 segment jonger uiterances inte words. No separate control
structure, reseliing the mechanism at the beginning of cach new word, is
required.

Second, the architecture permits both forward and backward interac-
{tons. Backward interactions are absoclutely essential if the model is to
account for the fact that the identity of a phoneme (or a word; Warren &
Sherman, 1974) can be influenced by what comes after it as well as what
comes before i, Some Kind of record of the past Is necessary 1o capture
these kinds of mfluences, as well as to provide a clear picture of the
sources of the more conventional effects of preceding context, and the
Trace construct lays this out in a way that is both comprehensibie and
efficient.

Third, the Trace structure provides an explicit mechanism which in-
stantiates the idea that there may be no distinction between the mecha-
nisms which carry out percepitual processing and those which provide a
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working memory for the results of the perceptual process. At one and
the same time, the Trace is a perceptual processing system and a memory
system. As a resuit, the model automatically accounts for the fact that
coherent memory traces persist loager than incoherent ones., The co-
herent ones resonate through interactive (that is, bottom-up and top-
down} activation, while incoherent ones fail to establish a resonance and
therefore die away more rapidly,

Several of these aspects of TRACE overlap with assumptions made in
other models, as mentioned in previous sections; continuey between
working memory and the perceptual processing structures has been sug-
gesied by a number of other authors {e.g., Conrad, 1962}, and the notion
that working memory is a dynamic processing structure rather than a
passive data structure has previously been advocated by Crowder (1978,
1981} and Grossberg (1978). Indeed, Grossberg has noted that resonaling
activation/competition processes can both enhance a perceptusl repre-
senfation and increase the retention of a representation; his analysis of
inferactive-activation processes in perceptian and memary captures the
continuity of perception and memory as well as many other desirable
properties of interactive-activation mechanisms.

Some Deficiencies of TRACE

Although TRACE has had a number of important successes, it aiso has
a sumber of equally important deficiencies. A number of these deficien-
cies relate to simplifying assumptions of the simulation modet, it is im-
portant (¢ be clear that such deficiencies are not intrinsic to the basic
struciure of the model but to the simplifications we have imposed upon
it to increase our ability to understand its basic properties. Certain de-
ficiencies-——such as the assumption that all phonemes are the same
length, that all features are equally salient and useful and overlap an equal
amount from one phoneme to another—are not present m TRACE 1.
Obviocusly a fully realistic model would take account of such differences.
Other factors that shouid be incorporated in a more complete model in-
clude some provision for effects of word frequency, and some mecha-
nisms for exploiting available cues t¢ word boundaries,

Ancther deficiency of the model is that the decision mechanisms have
not been fully encugh elaborated. For example, as it stands the model
does not provide a mechanism for deciding when a nonword has been
presented. Nor have we specified how decision processes would actually
use the information avaifable at the word level to locate word-initial pho-
nemes. A related probiem is the lack of an explicit provision for vari-
ability in the activation and/or readout processes. Incorporating vari-
ability directly into a simuiation model would greatly increase the com-
plexity of the simulation process, but would alse increase the model’s
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ability to capture the detailed properties of reaction time distributions
and errors (Ratcliff, 1978},

So far we have considered deficiencies which we would attribute to
simplifying assumptions adopted to keep TRACE as simple and trans-
parent in its behavior as possible. However, there are some problems that
are intrinsic to the basic structure of the model.

One fundamental deficiency of TRACE is that fact that it requires
massive duplication of units and connections, copying over and over
again the connection palterns that determine which features activate
which phonemes and which phonemes activate which words. As we al-
ready noted, learning in activation models {e.g.. Ackley, Hinton, &
Semowski, 1985, Grossherg, 1976; Rumelhart & Zipser, 1985} usually
involves the retuning of connections between units depending on their
simultaneous activation. Given TRACE's architecture, such learning
would not generalize from one part of the Trace to apother and so would
not be accessibie for inputs arising at different locations in the Trace, A
second problem is that the model, as is, 1s insensitive fo variatian in glabal
parameters, sach as speaking rate, speaker characteristics and accent,
and ambient acoustic characteristics. A third deficiency is that it fails to
account for the fact that one presentation of 4 word has an effect on the
perception of if a very short time later (Nusbaum & Slowiaczek, 1982},
These two presentations, in the current version of the model, simpty
excite separate tokens for the same word in different parts of the Trace.

All these deficiencies reflect the fact that the TRACE consists of a
large set of independent tokens of cach feature, phoneme, and word unit,
What appears to be cailed for instead is a model in which there is 2 single
stored representation of each phoneme and each word in some cenfral
representational structure, If this structure is accessed every time the
word 15 presented, then we could account for repetiiion priming effects,
Likewise, if there were a single central structure, learning couid occur in
just one set of units, as could dynamic returning of feature—~phoneme and
phoseme—word connections to take account of changes in global param-
eters or speaker characteristics.

However, it remains necessary 10 keep straight the relative temporal
location of different feature, phoneme, and word activations. Thus it wil
not do to simply abandon the Trace in favor of a single set of units
consistiag of just one copy of each phoneme and one copy of each word,

1t seems that we need to have things both ways: we need a central
representation that plays a role in processing every phoneme and every
word and that is subject to learning, retuning, and priming. We also need
1o keep a dynamic trace of the unfolding representation of the speech
stream, so that we ¢an continue to accommaodate both left and right con-
textuai cffects.
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We are currenily beginning {0 develop a moded that has these proper-
ties, based on a scheme for using a ceniral network of units {0 tune the
connections between the units in the Trace in the course of processing,
thereby effectively programing it ““on the fly.”” Similar ideas have already
been applied to visual word recognition (McClelland, 1985, 1986). Our
hope is that a new version of the modei based on these ideas will preserve
the positive features of TRACE | and TRACE I, while overcoming their
principle deficiencies.

Some General Issues in Speech and Language Perception

There are a number of general issues m speech and language percep-
tion. Four guestions in particular appear 1o lie close to the heart of our
conception of what speech perception is all about, First, what are the
basic units in speech perception? Second, what is the percept, and which
aspects of the processing of spoken language should be called perceptual?
Third, what is the representation of hinguistic rules? Fourth, is there any-
thing unique or special about speech perception? We conclude this articie
by considering each issue from the perspeciive we have developed
through the course of our explorations of TRACE.

What is the perceptual unit? Throughout this ariicle, we have consid-
ered three leveis of processing—feature, phoneme, and word. At cach
fevel, individual processing units stand for hypotheses about the features,
phonemes, and words that might be present at different points in the input
stream. It is worth noting that most aspects of the model's performance
are independent of the specific assumptions that we have made about the
units, or even the ievels, Thus, if we replaced the phoneme level with
demisyklables (Fujimura & L.ovins, 1978) or phoneme triples (Wickelgren,
1969}, very little of the behavior of the model would change. These units
can capturc some of the coarticulatory influences on phoneme identity,
and they would reduce some of the word-boundary ambiguities faced by
the current version of the medel, but neither coarticuiatory mfluences
nor word boundary ambiguities would disappear aitogether (see Elman
& McClelland, in press, for further discussion).

In fact, interactive activation models like TRACE can be formulated
in which each percepiual object is represented, not by a single umt, but
by a pattern of activation over a collection of units. For exampie, the
phoneme units in each time shice of TRACE might be replaced by a
different set of units which did not have a one-to-one correspondence to
rvhonemes. A phoneme would be represented by a particular pattern of
activation over the set of units {each representing, perhaps, 10 some con-
junction of lower level features) rather than by a single unit in the set.

There are some computational advantages of distributed representation
compared to our “"one unit one concept’” assumption (Hinton, Mc-
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Clelland, & Rumelhart, in press), but it is very difficult to find principled
ways of distinguishing between local and distributed representational
schemes empirically. Indeed, in certain cases there is an exact mapping
and, in general, it is possible to approximate most aspects of the behavior
of 2 local scheme with a distributed one and vice versa {Smolensky,
1986). In light of this, our use of local as opposed to distributed repre-
sentations is not perhaps as significant as it might appear at first glance,
What is essential is the information that the representation captures,
rather than whether it does so via distributed or local representation. The
use of local representations, with each unit (at the phoneme and word
levels, anyway} representing a mutually exclusive alternative makes it
much easier to relate the stfates of the processing system {0 overt response
categortes but 1s not otherwise a fundamental feature of the structure of
the model.

What is the percept? At a number of points in this arficle, we have
alluded to ways in which our conception of perception differs from the
usage of other authors. Such concepts as perception are inherently tied
to theory, and only derive their meaning with respect to particular theo-
retical constructs. Where does the TRACE model place us, then, with
respect (o the question, what is speech perception?

For one thing, TRACE biurs the distinction between perception and
other aspects of cognitive processing, There is really no clear way iIn
TRACE to say where perceptual processing ends and conceptual pro-
cesses of memory begin, However, following Marr’s (1982} definition of
visual percepiion, we could say that speech perception is the process of
formiag representations of the stimulus—the speaker’s utterance-—at
several ieveis of description. TRACE provides such a set of representa-
tions, as well as processes to construct them. On this view, then, the
Trace 15 the percept, and interaciive activation is the process of percep-
tion.

Aspects of this definition are appealing. For example, on this view, the
percepi is a very rich object, one that refers both to abstract, concepiual
entities like words and perhaps at higher levels even meanigs, as well
as 1o more concrete entities like acoustic signais and features. Perception
15 pot restricted to one or a subset of fevels, as it is in certain models
{e.g., Marslea-Wilson, 1980; Morton, [979).

On the other hand, the definition seems overly liberal, for there is
evidence suggesting that perceptual expenience and access to the results
of percepiual processing for the purposes of overt respoading may not
be completely unconstrained. A number of experiments, both in speech
{e.g., Foss & Swinney, 1973; McNeil & Lindig, 1973} and reading (Drew-
nowskl & Healy, 1977; Healy, 1976) suggest that under certain conditions
fower levels of processing are ipaccessible, or are at best accessed only
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with extra time or effort. On this evidence, if perception is to form rep-
resentations, and if the representations are anything like those postulated
in TRACE, then perception is guite independent of the experience of the
perceiver and of access to the percept. Put another way, we may choose
1o define the Trace as the percept, but it is not the perceptual experience.
This does not seem {0 be a very satisfactory state of affairs.

One coherent response 10 these arguments would be {o say that the
Trace is not the experience itself, but that some part or parts of it may
be the gbject of perceptual experience. It seems sensible, for example,
to suppose that the percept itself consists of that part of the Trace under
serutiny by the decision mechanisms. Osn this view, if would not be in-
coherent to suppose that representations might be formed which would
nevertheless be inaccessible either to experience or to overt response
processes. It would be a matter separate from the analysis of the inter-
active-activation process itself to specify the scope and conditions of
access to the Trace. In our simulations, we have assumed that the dech-
sion mechanism could be directed with equal facility to all levels, but this
may turn out 1o be an assumption that does not apply in ali cases.

How are rides represented? 1t is common in theories of language to
assume without discussion that linguistic rules are represented as such
in the mind of the perceiver, and that perception is guided primarily by
consultation of such rules, However, there are a number of difficulties
assoviated with this view. First, if does not explam how excephions are
handled; it would seem that for every exception, there would have to be
a special rule that takes precedence over the more general formulation,
Second, it does not expiain aspects of rule acquisition by children fearning
language, particularly the fact that rules appear to be acguired, at least
te a large extent, on a word by word basis; acguisttion 15 marked by a
gradual spread of the rule from one lexical item or sef of lexical Hiems o
others. Third, it does not explain how rules come mto existence histore-
caliy; as with acquisition, it appears that ruies spread gradually over the
lexicon. It is ¢ifficult to reconcile several of these findings with traditional
ruie-hased accounts of language knowledge and language processing.

Models like TRACE and the interactive-activation model of word rec-
ognition take a very different perspective on the issue of linguistic rules.
They are not represented as such, but rather they are buikt into the per-
ceptual system via the excitatory and inhibitory coanections needed for
processing the particular items which embody these ruies. Such a mech-
anism appears to avoid the problem of exceptions without difficulty, and
10 hold out the hope of accounting for the observation that rule acquisition
and rule change are strongly tied io particular items which embody the
ruies,

What is special about speech? We close by raising a question that often
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comes up in discussions of the mechanisms of speech perception. Is
speech special? If so, in what ways? 1t has been argued that speech is
special because of the distinctive phenomenon of categorical perception;
because of the encodedness of information about one phoneme in those
portions of the speech stream that are generally thought to represent other
phonemes; because the information in the speech stream that indicates
the presence of a particuiar phoneme appears not o be invariant at any
obvious physical level, because of the lack of segment boundaries, and
for a variety of other reasons.

Over the last several years, a number of empirical arguments have been
put forward that suggest that perhaps speech may not be so special, or
at least, not unique. Cue frade-offs and contextual influences are, of
course, preseni in many other domains (Medin & Barsalou, in press),
and a large number of stucics have reported categorical perception in
other modalitics (see Repp. 1984, for a discussion), Computational work
on probiems in vision have made clear that information that must be
extracted from visual displays s often compiexly encoded with other
wformation {Barrow & Tenenbaum, [978; Marr, 1982), and the lack of
clear boundaries between perceptual units in vision is notorious (Ballard
et al., 1983; Marr, 1982). Thus, the psychological phenomena that char-
acterize human speech perception, and the computational problems that
must be met by any mechanism of speech perception, are not, in general,
unique to speech, To be sure, the particular consteliation of probiems that
must be solved In speech perception is different than the constellation of
probiems faced in any other particuiar case, but most of the idividual
probiems themselves do appear to have analogs in other domains.

We thercfore prefer to view speech as an excellent test bed for the
development of an understanding of mechanisms which might turn out
to have considerably broader application. Speech is special to us, since
it so richly captures the multiplicity of the sources of constraint which
must be gxploited i perceptual processing, and because it so clearly
indicates the powerful influences of the mechanisms of perception on the
constructed perceptual representation. We see the TRACE model as an
example of a large class of massively parallel, interactive models that
holds great promise 1o provide a deeper understanding of the mechanisms
generally used in perception.
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