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We describe a model called the TRACE model of speech perception. The model 
is based on the principles of interactive activation. Information processing takes 
place through the excitatory and inhibitory interactions of a large number of 
simple processing units, each working continuously to update its own activation 
on the basis of the activations of other units to which it is connected. The model 
is called the TRACE model because the network of units forms a dynamic pro- 
cessing structure called “the Trace,” which serves at once as the perceptual 
processing mechanism and as the system’s working memory. The model is in- 
stantiated in two simulation programs. TRACE 1. described in detail elsewhere. 
deals with short segments of real speech, and suggests a mechanism for coping 
with the fact that the cues to the identity of phonemes vary as a function of 
context. TRACE II, the focus of this article, simulates a large number of empirical 
findings on the perception of phonemes and words and on the interactions of 
phoneme and word perception. At the phoneme level, TRACE II simulates the 
influence of lexical information on the identification of phonemes and accounts 
for the fact that lexical effects are found under certain conditions but not others. 
The model also shows how knowledge of phonological constraints can be em- 
bodied in particular lexical items but can still be used to influence processing of 
novel, nonword utterances. The model also exhibits categorical perception and 
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the ability to trade cues off against each other in phoneme identification. At the 
word level, the model captures the major positive feature of Marslen-Wilson’s 
COHORT model of speech perception, in that it shows immediate sensitivity to 
information favoring one word or set of words over others. At the same time, it 
overcomes a difftculty with the COHORT model: it can recover from underspec- 
itication or mispronunciation of a word’s beginning. TRACE II also uses lexical 
information to segment a stream of speech into a sequence of words and to find 
word beginnings and endings, and it simulates a number of recent findings related 
to these points. The TRACE model has some limitations, but we believe it is a 
step toward a psychologically and computationally adequate model of the process 
of speech perception. 0 1986 Academic Press, Inc. 

Consider the perception of the phoneme /g/ in the sentence “She re- 
ceived a valuable gift.” There are a large number of cues in this sentence 
to the identity of this phoneme. First, there are the acoustic cues to the 
identity of the /g/ itself. Second, the other phonemes in the same word 
provide another source of cues, for if we know the rest of the phonemes 
in this word, there are only a few phonemes that can form a word with 
them. Third, the semantic and syntactic context further constrain the 
possible words which might occur, and thus limit still further the possible 
interpretation of the first phoneme in “gift.” 

There is ample evidence that all of these different sources of infor- 
mation are used in recognizing words and the phonemes they contain. 
Indeed, as Cole and Rudnicky (1983) have recently noted, these basic 
facts were described in early experiments by Bagley (1900) over 80 years 
ago. Cole and Rudnicky point out that recent work (which we consider 
in detail below) has added clarity and detail to these basic findings but 
has not lead to a theoretical synthesis that provides a satisfactory account 
of these and many other basic aspects of speech perception. 

In this paper, we describe a model whose primary purpose is to account 
for the integration of multiple sources of information, or constraint, in 
speech perception. The model is constructed within a framework which 
appears to be ideal for the exploitation of simultaneous, and often mutual, 
constraints. This framework is the interactive activation framework 
(McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1981, 1982). 
This approach grew out of a number of earlier ideas, some coming first 
from research on spoken language recognition (Marslen-Wilson & Welsh, 
1978; Morton, 1969; Reddy, 1976) and others arising from more general 
considerations of interactive parallel processing (Anderson, 1977; Gross- 
berg, 1978; McClelland, 1979). 

According to the interactive-activation approach, information pro- 
cessing takes place through the excitatory and inhibitory interactions 
among a large number of processing elements called units. Each unit is 
a very simple processing device. It stands for a hypothesis about the 
input being processed. The activation of a unit is monotonically related 
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to the strength of the hypothesis for which the unit stands. Constraints 
among hypotheses are represented by connections. Units which are mu- 
tually consistent are mutually excitatory, and units that are mutually in- 
consistent are mutually inhibitory. Thus, the unit for /g/ has mutually 
excitatory connections with units for words containing /g/, and has mu- 
tually inhibitory connections with units for other phonemes. When the 
activation of a unit exceeds some threshold activation value, it begins to 
influence the activation of other units via its outgoing connections; the 
strength of these signals depends on the degree of the sender’s activation. 
The state of the system at a given point in time represents the current 
status of the various possible hypotheses about the input; information 
processing amounts to the evolution of that state, over time. Throughout 
the course of processing, each unit is continually receiving input from 
other units, continually updating its activation on the basis of these inputs, 
and, if it is over threshold, it is continually sending excitatory and inhib- 
itory signals to other units. This “interactive-activation” process allows 
each hypothesis both to constrain and be constrained by other mutually 
consistent or inconsistent hypotheses. 

Criteria and Constraints on Model Development 
There are generally two kinds of models of the speech perception pro- 

cess. One kind of model, which grows out of speech engineering and 
artifical intelligence, attempts to provide a machine solution to the 
problem of speech recognition. Examples of this kind of model are 
HEARSAY (Erman & Lesser, 1980; Reddy, Erman, Fennell, & Neely, 
1973) HWIM (Wolf & Woods, 1978), HARPY (Lowerre, 1976), and 
LAFSSCRIBER (Klatt, 1980). A second kind of model, growing out of 
experimental psychology, attempts to account for aspects of psycholog- 
ical data on the perception of speech. Examples of this class of models 
include Marslen-Wilson’s COHORT Model (Marslen-Wilson & Tyler, 
1980; Marslen-Wilson & Welsh, 1978; Nusbaum & Slowiaczek, 1982); 
Massaro’s feature integration model (Massaro, 1981; Massaro & Oden, 
1980a, 1980b; Oden & Massaro, 1978); Cole and Jakimik’s (1978, 1980) 
model of auditory word processing, and the model of auditory and pho- 
netic memory espoused by Fujisaki and Kawashima (1968) and Pisoni 
(1973, 1975). 

Each approach honors a different criterion for success. Machine 
models are judged in terms of actual performance in recognizing real 
speech. Psychological models are judged in terms of their ability to ac- 
count for details of human performance in speech recognition. We call 
these two criteria compututional and psychological adequacy. 

In extending the interactive activation approach to speech perception, 
we had essentially two questions: First, could the interactive-activation 
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approach contribute toward the development of a computationally suffi- 
cient framework for speech perception? Second, could it account for what 
is known about the psychology of speech perception? In short, we wanted 
to know, was the approach fruitful, both on computational and psycho- 
logical grounds. 

Two facts immediately became apparent. First, spoken language intro- 
duces many challenges that make it far from clear how well the interac- 
tive-activation approach will serve when extended from print to speech. 
Second, the approach itself is too broad to provide a concrete model, 
without further assumptions. Here we review several facts about speech 
that played a role in shaping the specific assumptions embodied in 
TRACE. 

Some Important Facts about Speech 
Our intention here is not to provide an extensive survey of the nature 

of speech and its perception, but rather to point to several fundamental 
aspects of speech that have played important roles in the development 
of the model we describe here. A very useful discussion of several of 
these points is available in Klatt (1980). 

Temporal nature of the speech stimulus. It does not, of course, take a 
scientist to observe one fundamental difference between speech and 
print: speech is a signal which is extended in time, whereas print is a 
stimulus which is extended in space. The sequential nature of speech 
poses problems for a modeler, in that to account for context effects, one 
needs to keep a record of the context. It would be a simple matter to 
process speech if each successive portion of the speech input were pro- 
cessed independently of all of the others, but in fact, this is clearly not 
the case. The presence of context effects in speech perception requires 
a mechanism that keeps some record of that context, in a form that allows 
it to influence the interpretation of subsequent input. 

A further point, and one that has been much neglected in certain 
models, is that it is not only prior context but also subsequent context 
that influences perception. (This and related points have recently been 
made by Grosjean & Gee, 1984; Salasoo & Pisoni, 1985; and Thompson, 
1984). For example, Ganong (1980) reported that the identification of a 
syllable-initial speech sound that was constructed to be between /g/ and 
/W was influenced by whether the rest of the syllable was /Is/ (as in 
“kiss”) or /Ift/ (as in “gift”). Such “right context effects” (Thompson, 
1984) indicate that the perception of what comes in now both influences 
and is influenced by the perception of what comes in later. This fact 
suggests that the record of what has already been presented cannot not 
be a static representation, but should remain in a malleable form, subject 
to alteration as a result of influences arising from subsequent context. 
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Lack of boundaries and temporal overlap. A second fundamental point 
about speech is that the cues to successive units of speech frequently 
overlap in time. The problem is particularly severe at the phoneme level. 
A glance at a schematic speech spectrogram (Liberman, 1970; Fig. 1) 
clearly illustrates this problem. There are no separable packets of infor- 
mation in the spectrogram like the separate feature bundles that make up 
letters in printed words. 

Because of the overlap of successive phonemes, it is difficult and, we 
believe, counterproductive to try to divide the speech stream up into 
separate phoneme units in advance of identifying the units. A number of 
other researchers (e.g., Fowler, 1984; Klatt, 1980) have made much the 
same point. A superior approach seems to be to allow the phoneme iden- 
tification process to examine the speech stream for characteristic pat- 
terns, without first segmenting the stream into separate units. 

The problem of overlap is less severe for words than for phonemes, 
but it does not go away completely. In rapid speech, words run into each 
other, and there are no pauses between words in running speech. To be 
sure, there are often cues that signal the locations of boundaries between 
words -stop consonants are generally aspirated at the beginnings of 
stressed words in English, and word initial vowels are generally preceded 
by glottal stops, for example. These cues have been studied by a number 
of investigators, particularly Lehiste (e.g., Lehiste, 1960, 1964) and Nak- 
atani and collaborators. Nakatani and Dukes (1977) demonstrated that 
perceivers exploit some of these cues but found that certain utterances 
do not provide sufficient cues to word boundaries to permit reliable per- 
ception of the intended utterance. Speech errors often involve errors of 

TIME 
FIG. 1. A schematic spectrogram for the syllable “bag,” indicating the overlap of the 

information specifying the different phonemes. Reprinted with permission from Liberman 
(1970). 
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word segmentation (Bond & Garnes, 1980), and certain segmentation 
decisions are easily influenced by contextual factors (Cole & Jakimik, 
1980). Thus, it is clear that word recognition cannot count on an accurate 
segmentation of the phoneme stream into separate word units, and in 
many cases such a segmentation would perforce exclude from one of the 
words a shared segment that is doing double duty in each of two succes- 
sive words. 

Context-sensitivity of cues. A third major fact about speech is that the 
cues for a particular unit vary considerably with the context in which 
they occur. For example, the transition of the second formant carries a 
great deal of information about the identity of the stop consonant /b/ in 
Fig. 1, but that formant would look quite different had the syllable been 
“big” or “bog” instead of “bag.” Thus the context in which a phoneme 
occurs restructures the cues to the identity of that phoneme (Liberman, 
1970). The extent of the restructuring depends on the unit selected and 
on the particular cue involved. But the problem is ubiquitous in speech. 

Not only are the cues for each phoneme dramatically affected by 
preceding and following context, they are also altered by more global 
factors such as rate of speech (Miller, 1981), by morphological and pro- 
sodic factors such as position in word and in the stress contour of the 
utterance, and by characteristics of the speaker such as size and shape 
of the vocal tract, fundamental frequency of the speaking voice, and 
dialectical variations (see Klatt, 1980, and Repp & Liberman, 1984, for 
discussions). 

A number of different approaches to the problem have been tried by 
different investigators. One approach is to try to find relatively invar- 
iant-generally relational-features (e.g., Stevens & Blumstein, 1981). 
Another approach has been to redefine the unit so that it encompasses 
the context and therefore becomes more invariant (Fujimura & Lovins, 
1982; Klatt, 1980; Wickelgren, 1969). While these are both sensible and 
useful approaches, the first has not yet succeeded in establishing a suf- 
ficiently invariant set of cues, and the second may alleviate but does not 
eliminate the problem; even units such as demisyllables (Fujimura & 
Lovins, 1982), context-sensitive allophones (Wickelgren, 1969), or even 
whole words (Klatt, 1980) are still influenced by context. We have chosen 
to focus instead on a third possibility: that the perceptual system uses 
information from the context in which an utterance occurs to alter con- 
nections, thereby effectively allowing the context to retune the perceptual 
mechanism on the fly. 

Noise and indeterminacy in the speech signal. To compound all the 
problems alluded to above, there is the additional fact that speech is often 
perceived under less than ideal circumstances. While a slow and careful 
speaker in a quiet room may produce sufficient cues to allow correct 
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perception of all of the phonemes in an utterance without the aid of lexical 
or other higher level constraints, these conditions do not always obtain. 
People can correctly perceive speech under quite impoverished condi- 
tions, if it is semantically coherent and syntactically well formed (G. 
Miller, Heise, & Lichten, 1951). This means that the speech mechanisms 
must be able to function, even with a highly degraded stimulus. In par- 
ticular, as Thompson (1984), Norris (1982), and Grosjean and Gee (1984) 
have pointed out, the mechanisms of speech perception cannot count on 
accurate information about any part of a word. As we shall see, this fact 
poses a serious problem for one of the best current psychological models 
of the process of spoken word recognition (Marslen-Wilson & Welsh, 
1978). 

Many of the characteristics that we have reviewed differentiate speech 
from print-at least, from very high quality print on white paper-but 
it would be a mistake to think that similar problems are not encountered 
in other domains. Certainly, the sequential nature of spoken input sets 
speech apart from vision, in which there can be some degree of simul- 
taneity of perception. However, the problems of ill-defined boundaries, 
context sensitivity of cues, and noise and indeterminacy are central 
problems in vision just as much as they are in speech (cf. Ballard, Hinton, 
and Sejnowski, 1983; Barrow & Tenenbaum, 1978; Marr, 1982). Thus, 
though the model we present here is focussed on speech perception, we 
would hope that the ways in which it deals with the challenges posed by 
the speech signal are applicable in other domains. 

The Importance of the Right Architecture 
All four of the considerations listed above played an important role in 

the formulation of the TRACE model. The model is an instance of an 
interactive activation model, but it is by no means the only instance of 
such a model that we have considered or that could be considered. Other 
formulations we considered simply did not appear to offer a satisfactory 
framework for dealing with these four aspects of speech (see Elman & 
McClelland, 1984, for discussion). Thus, the TRACE model hinges as 
much on the particular processing architecture it proposes for speech 
perception as it does on the interactive activation processes that occur 
within this architecture. 

Interactive-activation mechanisms are a class too broad to stand or fall 
on the merits of a single model. To the extent that computationally and 
psychologically adequate models can be built within the framework, the 
attractiveness of the framework as a whole is, of course, increased, but 
the adequacy of any particular model will generally depend on the par- 
ticular assumptions that model embodies. It is no different with interactive- 
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activation models than with models in any other computational frame- 
work, such as expert systems or production systems. 

THE TRACE MODEL 
Overview 

The TRACE model consists primarily of a very large number of units, 
organized into three levels, thefeature, phoneme, and word levels. Each 
unit stands for a hypothesis about a particular perceptual object occurring 
at a particular point in time defined relative to the beginning of the ut- 
terance. 

A small subset of the units in TRACE II, the version of the model we 
focus on in this paper, is illustrated in Figs. 2, 3, and 4. Each of the three 
figures replicates the same set of units, illustrating a different property 
of the model in each case. In the figures, each rectangle corresponds to 
a separate processing unit. The labels on the units and along the side 
indicate the spoken object (feature, phoneme, or word) for which each 
unit stands. The left and right edges of each rectangle indicate the portion 
of the input the unit spans. 

At the feature level, there are several banks of feature detectors, one 
for each of several dimensions of speech sounds. Each bank is replicated 
for each of several successive moments in time, or time slices. At the 
phoneme level, there are detectors for each of the phonemes. There is 
one copy of each phoneme detector centered over every three time slices. 
Each unit spans six time slices, so units with adjacent centers span over- 
lapping ranges of slices. At the word level, there are detectors for each 
word. There is one copy of each word detector centered over every three 
feature slices. Here each detector spans a stretch of feature slices cor- 
responding to the entire length of the word. Again, then, units with ad- 
jacent centers span overlapping ranges of slices. 

Input to the model, in the form of a pattern of activation to be applied 
to the units at the feature level, is presented sequentially to the feature- 
level units in successive slices, as it would if it were a real speech stream, 
unfolding in time. Mock-speech inputs on the three illustrated dimensions 
for the phrase “tea cup” (/tik^p/) are shown in Fig. 2. At any instant, 
input is arriving only at the units in one slice at the feature level. In terms 
of the display in Fig. 2, then, we can visualize the input being applied to 
successive slices of the network at successive moments in time. However, 
it is important to remember that all the units are continually involved in 
processing, and processing of the input arriving at one time is just begin- 
ning as the input is moved along to the next time slice. 

The entire network of units is called “the Trace,” because the pattern 
of activation left by a spoken input is a trace of the analysis of the input 
at each of the three processing levels. This trace is unlike many traces, 
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FIG. 2. A subset of the units in TRACE II. Each rectangle represents a different unit. The 
labels indicate the item for which the unit stands, and the horizontal edges of the rectangle 
indicate the portion of the Trace spanned by each unit. The input feature specifications for 
the phrase “tea cup,” preceded and followed by silence, are indicated for the three illus- 
trated dimensions by the blackening of the corresponding feature units. 

though, in that it is dynamic, since it consists of activations of processing 
elements, and these processing elements continue to interact as time goes 
on. The distinction between perception and (primary) memory is com- 
pletely blurred, since the percept is unfolding in the same structures that 
serve as working memory, and perceptual processing of older portions of 
the input continues even as newer portions are coming into the system. 
These continuing interactions permit the model to incorporate right con- 
text effects, and allow the model to account directly for certain aspects 
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FIG. 3. The connections of the unit for the phoneme lki, centered over Time Slice 74. The 
rectangle for this unit is highlighted with a bold outline. The ikl unit has mutually excitatory 
connections to all the word- and feature-level units colored either partly or wholly in black. 
The more coloring on a units’ rectangle, the greater the strength of the connection. The 
/k/ unit has mutually inhibitory connections to all of the phoneme-level units colored partly 
or wholly in grey. Again, the relative amount of inhibition is indicated by the extent of the 
coloring of the unit; it is directly proportional to the extent of the temporal overlap of the 
units. 

of short-term memory, such as the fact that more information can be 
retained for short periods of time if it hangs together to form a coherent 
whole. 

Processing takes place through the excitatory and inhibitory interac- 
tions of the units in the Trace. Units on different levels that are mutually 
consistent have mutually excitatory connections, while units on the same 
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kw 

FIG. 4. The connections of the highlighted unit for the high value on the Vocalic feature 
dimension in Time Slice 9 and for the highlighted unit for the word /k”pl starting in Slice 
24. Excitatory connections are represented in black. inhibitory connections in grey. as in 
Fig. 3. 

level that are inconsistent have mutually inhibitory connections. All con- 
nections are bidirectional. Bidirectional excitatory and inhibitory con- 
nections of the unit for /k/ centered over Feature-slice 24 (counting from 
0) are shown in Fig. 3; connections for the high value of the feature 
Vocalic in Slice 9 and for the word /k^p/ with the /k/ centered over Slice 
24 are shown in Fig. 4. 

The interactive activation model of visual word recognition (Mc- 
Clelland & Rumelhart, 1981) included inhibitory connections between 
each unit on the feature level and letters that did not contain the feature, 
and between each letter unit and the words that did not contain the letter. 
Thus the units for T in the first letter position inhibited the units for all 
words that did not begin with T. However, more recent versions of the 
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visual model eliminate these between-level inhibitory connections, since 
these connections can interfere with successful use of partial information 
(McClelland, 1985; McClelland, 1986). Like these newer versions of the 
visual model, TRACE likewise contains no between-level inhibition. We 
will see that this feature of TRACE plays a very important role in its 
ability to simulate a number of empirical phenomena. 

Sources of TRACE’s architecture. The inspiration for the architecture 
of TRACE goes back to the HEARSAY Speech understanding system 
(Erman & Lesser, 1980; Reddy et al., 1973). HEARSAY introduced the 
notion of a Blackboard, a structure similar to the Trace in the TRACE 
model. The main difference is that the Trace is a dynamic processing 
structure that is self-updating, while the Blackboard in HEARSAY was 
a passive data structure through which antonomous processes shared 
information. 

The architecture of TRACE bears a strong resemblance to the “neural 
spectrogram” proposed by Crowder (1978, 1981) to account for interfer- 
ence effects between successive items in short-term memory. Like our 
Trace, Crowder’s neural spectrogram provides a dynamic working 
memory representation of a spoken input. There are two important dif- 
ferences between the Trace and Crowder’s neural spectrogram, however. 
First of all, the neural spectrogram was assumed only to represent the 
frequency spectrum of the speech wave over time; the Trace, on the other 
hand, represents the speech wave in terms of a large number of different 
feature dimensions, as well as in terms of the phonemes and words con- 
sistent with the pattern of activation at the feature level. In this regard 
TRACE might be seen as an extension of the neural spectrogram idea. 
The second difference is that Crowder postulates inhibitory interactions 
between detectors for spectral components spaced up to several hundred 
milliseconds apart. These inhibitory interactions extend considerably far- 
ther than those we have included in the feature level of the Trace. This 
difference does not reflect a disagreement with Crowder’s assumptions. 
Though we have not found it necessary to adopt this assumption to ac- 
count for the phenomena we focus on in this article, lateral extension of 
inhibition in the time domain might well allow the TRACE framework to 
incorporate many of the findings Crowder discusses in the two articles 
cited. 

Context-Sensitive Tuning of Phoneme Units 
The connections between the feature and phoneme level determine 

what pattern of activations over the feature units will most strongly ac- 
tivate the detector for each phoneme. To cope with the fact that the 
features representing each phoneme vary according to the phonemes sur- 
rounding them, the model adjusts the connections from units at the fea- 
ture level to units at the phoneme level as a function of activations at the 
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phoneme level in preceding and following time slices. For example, when 
the phoneme /t/ is preceded or followed by the vowel /i/, the feature 
pattern corresponding to the /t/ is very different than it is when the /t/ is 
preceded or followed by another vowel, such as /a/. Accordingly, when 
the unit for /i/ in a particular slice is active, it changes the pattern of 
connections for units for /t/ in preceding and following slices. 

TRACE I and TRACE II 
In developing TRACE, and in trying to test its computational and psy- 

chological adequacy, we found that we were sometimes led in rather 
different directions. We wanted to show that TRACE could process real 
speech, but to build a model that did so it was necessary to worry about 
exactly what features must be extracted from the speech signal, about 
differences in duration of different features of different phonemes, and 
about how to cope with the ways in which features and feature durations 
vary as a function of context. Obviously, these are important problems, 
worthy of considerable attention. However, concern with these issues 
tended to obscure attention to the fundamental properties of the model 
and the model’s ability to account for basic aspects of the psychological 
data obtained in many experiments. 

To cope with these conflicting goals, we have developed two different 
versions of the model, called TRACE 1 and TRACE II. Both models 
spring from the same basic assumptions, but focus on different aspects 
of speech perception. TRACE I was designed to address some of the 
challenges posed by the task of recognizing phonemes from real speech. 
This version of the model is described in detail in Elman and McClelland 
(in press). With this version of the model, we were able to show that the 
TRACE framework could indeed be used to process real speech-albeit 
from a single speaker uttering isolated monosyllables at this point. We 
were also able to demonstrate the efficacy of the idea of adjusting feature 
to phoneme connections on the basis of activations produced by sur- 
rounding context. With connection strength adjustment in place, the 
model was able to identify the stop consonant in 90% of a set of isolated 
monosyllables correctly, up from 79% with an invariant set of connec- 
tions. This level of performance is comparable to what has been achieved 
by other machine-based phoneme identification schemes (e.g., Kopec, 
1984) and illustrates the promise of the connection strength adjustment 
scheme for coping with variability due to local phonetic context. Ideas 
for extending the connection strength adjustment scheme to deal with the 
ways in which cues to phoneme identification vary with global variables 
(rate, speaker characteristics, etc.) are considered in the general discus- 
sion. 

TRACE II, the version described in the present paper, was designed 
to account primarily for lexical influences on phoneme perception and 
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for what is known about on-line recognition of words, though we use it 
to illustrate how certain other aspects of phoneme perception fall out of 
the TRACE framework. This version of the model is actually a simplified 
version of TRACE I. Most importantly, we eliminated the connection- 
strength adjustment facility, and we replaced the real speech inputs to 
TRACE I with mock speech. This mock speech input consisted of over- 
lapping but contextually invariant specifications of the features of suc- 
cessive phonemes. Obviously, then, TRACE II sidesteps many funda- 
mental issues about speech. But it makes it much easier to see how the 
mechanism can account for a number of aspects of phoneme and word 
recognition. A number of further simplifying assumptions were made to 
facilitate examination of basic properties of the interactive activation pro- 
cesses taking place within the model. 

The following sections describe TRACE II in more detail. First we 
consider the specifications of the mock-speech input to the model, and 
then we consider the units and connections that make up the Trace at 
each of the three levels. 

Mock-Speech Inputs 
The input to TRACE II was a series of specifications for inputs to units 

at the feature level, one for each 25-ms time slice of the mock utterance. 
These specifications were generated by a simple computer program from 
a sequence of to-be-presented segments provided by the human user of 
the simulation program. The allowed segments consisted of the stop con- 
sonants lb/, /p/, Id/, It/, lgl, and lkl, the fricatives Is/ and IS/ (“sh” as in 
“ship”), the liquids Ill and lrl, and the vowels la/ (as in “pot”), Ii/ (as in 
“beet”), lul (as in “boot”), and /^I (as in “but”). /^/ was also used to 
represent reduced vowels such as the second vowel in “target.” There 
was also a “silence” segment represented by /-I. Special segments, such 
as a segment halfway between /b/ and /p/, were also used; their properties 
are described in descriptions of the relevant simulations. 

A set of seven dimensions was used in TRACE II to represent the 
feature-level inputs. Five of the dimensions (Consonantal, Vocalic, Dif- 
fuseness, Acuteness, and Voicing) were taken from classical work in 
phonology (Jakobson, Fant, & Halle, 1952), though we treat each of these 
dimensions as continua, in the spirit of Oden and Massaro (1978), rather 
than as binary features. A sixth dimension, Power, was included because 
it has been found useful for phoneme identification in various machine 
systems (e.g., Reddy, 1976), and it was incorporated here to add an ad- 
ditional dimension to increase the differentiation of the vowels and con- 
sonants. The seventh dimension, the amplitude of the burst of noise that 
occurs at the beginning of word initial stops, was included to provide an 
additional basis for distinguishing the stop consonants, which otherwise 
differed from each other on only one or two dimensions. Of course, these 
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dimensions are intentional simplifications of the real acoustic structure 
of speech, in much the same way that the font used by McClelland and 
Rumelhart (1981) in the interactive-activation model of visual word rec- 
ognition was an intentional simplification of the real structure of print. 

Each dimension was divided into eight value ranges. Each phoneme 
was assigned a value on each dimension; the values on the Vocalic, Dif- 
fuseness, and Acuteness dimensions for the phonemes in the utterance 
/tik^p/ are shown in Fig. 2. The full set of values are shown in Table 1. 
Numbers in the cells of the table indicate which value on the indicated 
dimension was most strongly activated by the feature pattern for the 
indicated phoneme. Values range from 1 = very low to 8 = very high. 
The last two dimensions were altered for the categorical perception and 
trading relations simulations. 

Values were assigned to approximate the values real phonemes would 
have on these dimensions and to make phonemes that fall into the same 
phonetic category have identical values on many of the dimensions. Thus, 
for example, all stop consonants were assigned the same values on the 
Power, Vocalic, and Consonantal dimensions. We do not claim to have 
captured the details of phoneme similarity exactly. Indeed, one cannot 
do so in a fixed feature set because the similarities vary as a function of 
context. However, the feature sets do have the property that the feature 
pattern for one phoneme is more similar to the feature pattern for other 
phonemes in the same phonetic category (stop, fricative, liquid, or vowel) 
than it is to the patterns for phonemes in other categories. Among the 
stops, those phonemes sharing place of articulation or voicing are more 
similar than those sharing neither attribute. 

The correlations of the feature patterns for the 15 phonemes used are 
shown in Table 2. It is these correlations of the patterns assigned to the 
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different phonemes, rather than the actual values assigned to particular 
phonemes or even the labels attached to the different mock-speech di- 
mensions, that determine the behavior of the simulation model, since it 
is these correlations that determine how much an instance of one pho- 
neme will tend to excite the detector for another. 

The feature patterns were constructed in such a way that it was possible 
to create feature patterns that would activate two different phonemes in 
the same category (stop, liquid, fricative, or vowel) to an equal extent 
by averaging the values of the two phonemes on one or more dimensions. 
In this way, it was a simple matter to make up ambiguous inputs, halfway 
between two phonemes, or to construct continua varying between two 
phonemes on one or more dimensions. 

The feature specification of each phoneme in the input stream extended 
over 11 time slices of the input. The strength of the pattern grew to a 
peak at the 6th slice and fell off again, as illustrated in Fig. 2. Peaks of 
successive phonemes were separated by 6 slices. Thus, specifications of 
successive phonemes overlapped, as they do in real speech (Fowler, 1984; 
Liberman, 1970). 

Generally, there were no cues to word boundaries in the speech 
stream-the feature specification for the last phoneme of one word 
overlapped with the first phoneme of the next in just the same way feature 
specifications of adjacent phonemes overlap within words. However, en- 
tire utterances presented to the model for processing-whether they were 
individual syllables, words, or strings of words-were preceded and fol- 
lowed by silence. Silence was not simply the absence of any input; rather, 
it was a pattern of feature values, just like the phonemes. Thus, a ninth 
value on each of the seven dimensions was associated with silence. These 
values were actually outside the range of values which occurred in the 
phonemes themselves, so that the features of silence were completely 
uncorrelated with the features of any of the phonemes used. 

Feature Level Units and Connections 
The units at the feature level are detectors for features of the speech 

stream at particular moments in time. In TRACE II, there was a unit for 
each of the nine values on each of the seven dimensions in each time 
slice of the Trace. The figures show three sets of feature units in several 
time slices. Units for features on the same dimension within the same 
time slice are mutually inhibitory. Thus, the unit for the high value of the 
Vocalic dimension in Time Slice 9 inhibits the units for other values on 
the same dimension in the same time slice, as illustrated in Fig. 4. This 
figure also illustrates the mutually excitatory connections of this same 
feature unit with units at the phoneme level. In the next section we re- 
describe these connections from the point of view of the phoneme level. 
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The Phoneme Level and Feature-Phoneme Connections 
At the phoneme level, there is a set of detectors for each of the 15 

phonemes listed above. In addition, there is a set of detectors for the 
presence of silence. These silence detectors are treated like all other 
phoneme detectors. Each member of the set of detectors for a particular 
phoneme is centered over a different time slice at the feature level, and 
the centers are spaced three time slices apart. The unit centered over a 
particular slice received excitatory input from feature units in a range of 
slices, extending both forward and backward from the slice in which the 
phoneme unit is located. It also sends excitatory feedback down to the 
same feature units in the same range of slices. 

The connection strengths between the feature-level units and a partic- 
ular phoneme-level unit exactly match the feature pattern the phoneme 
is given in its input specification. Thus, as illustrated in Fig. 3, the 
strengths of the connections between the node for/k/ centered over Time 
Slice 24 and the nodes at the feature level are exactly proportional to the 
pattern of input to the feature level produced by an input specification 
containing the features of lk/ centered in the same time slice. 

There are inhibitory connections between units at the phoneme level. 
Units inhibit each other to the extent that the speech objects they stand 
for represent alternative interpretations of the content of the speech 
stream at the same point in the utterance. Note that, although the feature 
specification of a phoneme is spread over a window of 11 slices, succes- 
sive phonemes in the input have their centers 6 slices apart. Thus each 
phoneme-level unit is thought of as spanning 6 feature-level slices, as 
illustrated in Fig. 3. Each unit inhibits others in proportion to their 
overlap. Thus, a phoneme detector inhibits other phoneme detectors cen- 
tered over the same slice twice as much as it inhibits detectors centered 
3 slices away, and inhibits detectors centered 6 or more slices away not 
at all. 

Word Units and Word-Phoneme Connections 
There is a unit for every word in every time slice. Each of these units 

represents a different hypothesis about a word identity and starting lo- 
cation in the Trace. For example, the unit for the word /kp/ in Slice 24 
(highlighted in Fig. 4) represents the hypothesis that the input contains 
the word “cup” starting in Slice 24. More exactly, it represents the hy- 
pothesis that the input contains the word “cup” with its first phoneme 
centered in Time Slice 24. 

Word units receive excitation from the units for the phonemes they 
contain in a series of overlapping windows. Thus, the unit for “cup” in 
Time Slice 24 will receive excitation from lW in slices neighboring Slice 
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24, from /^/ in slices neighboring Slice 30, and from /p/ in slices neigh- 
boring Slice 36. As with the feature-phoneme connections, these con- 
nections are strongest at the center of the window and fall off linearly on 
either side. 

The inhibitory connections at the word level are similar to those at the 
phoneme level. Again, the strength of the inhibition between two word 
units depends on the number of time slices in which they overlap. Thus, 
units representing alternative interpretations of the same stretch of pho- 
neme units are strongly competitive, but units representing interpreta- 
tions of nonoverlapping sequences of phonemes do not compete at all. 

TRACE II has detectors for the 211 words found in a computerized 
phonetic word list that met all of the following constraints: (a) the word 
consisted only of the phonemes listed above; (b) it was not an inflection 
of some other word that could be made by adding “-ed,” “-s,” or 
“-ing”; (c) the word together with its “-ed,” “-s,” and “-ing” inflections 
occurred with a frequency of 20 or more per million in the Kucera and 
Francis (1967) word count. It is not claimed that the model’s lexicon is an 
exhaustive list of words meeting this criterion, since the computerized 
phonetic lexicon was not complete, but it is reasonably close to this. To 
make specific points about the behavior of the model, detectors for the 
following three words not in the main list were added: “blush,” “regal,” 
and “sleet.” The model also had detectors at the word level for silence 
(/-/), which was treated like a one-phoneme word. 

Presentation and Processing of an Utterance 
Before processing of an utterance begins, the activations of all of the 

units are set at their resting values. At the start of processing, the input 
to the initial slice of feature units is applied. Activations are then updated, 
ending the initial time cycle. On the next time cycle, the input to the next 
slice of feature units is applied, and excitatory and inhibitory inputs to 
each unit resulting from the pattern of activation left at the end of the 
previous time slice are computed. 

It is important to remember that the input is applied, one slice at a 
time, proceeding from left to right as though it were an ongoing stream 
of speech “writing on” the successive time slices of the Trace. The in- 
teractive-activation process is occurring throughout the Trace on each 
time slice, even though the external bottom-up input is only coming into 
the feature units one slice at a time. Processing interactions can continue 
even after the left to right sweep through the input reaches the end of the 
Trace. Once this happens, there are simply no new input specifications 
applied to the Trace; the continuing interactions are based on what has 
already been presented. This interaction process is assumed to continue 
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indefinitely, though for practical purposes it is always terminated after 
some predetermined number of time cycles has elapsed. 

Details of Processing Dynamics 
The interactive activation process in the Trace model follows the dy- 

namic assumptions laid out in McClelland and Rumelhart (1981). Each 
unit has a resting activation value arbitrarily set at 0, a maximum activation 
value arbitrarily set at 1.0, and a minimum activation set at - .3. On 
every time cycle of processing, all the weighted excitatory and inhibitory 
signals impinging upon a unit are added together. The signal from one 
unit to another is just the extent to which its activation exceeds 0; if its 
activation is less than 0, the signal is 0.’ Global level-specific excitatory, 
inhibitory, and decay parameters scale the relative magnitudes of different 
types of influences on the activation of each unit. Values for these pa- 
rameters are given below. 

After the net input to each unit has been determined based on the prior 
activations of the units, the activations of the units are all updated for 
the next processing cycle. The new value of the activation of the unit is 
a function of its net input from other units and its previous activation 
value. The exact function used (see McClelland & Rumelhart, 1981) keeps 
unit activations bounded between their maximum and minimum values. 
Given a constant input, the activation of a unit will stabilize at a point 
between its maximum and minimum that depends on the strength and 
sign (excitatory or inhibitory) of the input. With a net input of 0, the 
activation of the unit will gradually return to its resting level. 

Each processing time cycle corresponds to a single time slice at the 
feature level. This is actually a parameter of the model-there is no 
intrinsic reason why there should be a single cycle of the interactive- 
activation process synchronized with the arrival of each successive slice 
of the input. A higher rate of cycling would speed the percolation of 
effects of new input through the network relative to the rate of presen- 
tation. 
Output Assumptions 

Activations of units in the Trace rise and fall as the input sweeps across 
the feature level. At any time, a decision can be made based on the pattern 
of activation as it stands at that moment. The decision mechanism can, 
we assume, be directed to consider the set of units located within a small 
window of adjacent slices within any level. The units in this set then 

1 At the word level, the inhibitory signal from one word to another is just the square of 
the extent to which the sender’s activation exceeds zero. This tends to smooth the effects 
of many units suddenly becoming slightly activated, and of course it also increases the 
dominance of one active word over many weakly activated ones. 
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constitute the set of response alternatives, designated by the identity of 
the item for which the unit stands (note that with several adjacent slices 
included in the set, several units in the alternative set may correspond to 
the same overt response). Word identification responses are assumed to 
be based on readout from the word level, and phoneme identification 
responses are assumed to be based on readout from the phoneme level. 
As far as phoneme identification is concerned, then, a homogeneous 
mechanism is assumed to be used with both word and nonword stimuli. 
The decision mechanism can be asked to make a response either (a) at a 
criteria1 time during processing or (b) when a unit in the alternative set 
reaches a criteria1 strength relative to the activation of other alternative 
units. Once a decision has been made to make a response, one of the 
alternatives is chosen from the members of the set. The probability of 
choosing a particular alternative i is then given by the Lute (1959) 
choice rule: 

whenj indexes the members of the alternative set, and 

The exponential transformation ensures that all activations are positive 
and gives great weight to stronger activations, and the Lute rule ensures 
that the sum of all of the response probabilities adds up to 1.0. Substan- 
tially the same assumptions were used by McClelland and Rumelhart 
(1981). 

Minimizing the Number of Parameters 
At the expense of considerable realism, we have tried to keep TRACE 

11 simple by using homogeneous parameters wherever possible. Thus, as 
already noted, the feature specifications of all phonemes were spread out 
over the same number of time slices, effectively giving all phonemes the 
same duration. The strength of the total excitation coming into a partic- 
ular phoneme unit from the feature units was normalized to the same 
value for all phonemes, thus making each phoneme equally excitable by 
its own canonical pattern. Other simplifying assumptions should be noted 
as well. For example, there were no differences in connections or resting 
levels for words of dfierent frequency. It would have been a simple matter 
to incorporate frequency as McClelland and Rumelhart (1981) did, and a 
complete model would, of course, include some account for the ubiquitous 
effects of word frequency. We left it out here to facilitate an examination 
of the many other factors that appear to influence the process of word 
recognition in speech perception. 
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Even with all the simplifications described above, the TRACE model 
still has a number of free parameters. These parameters are listed in Table 
3. It should be noted that parameters are not in general directly compa- 
rable across levels. For example, phoneme-to-phoneme and word-to- 
word inhibition are not directly comparable to each other or to feature- 
to-phoneme inhibition, since feature-level units compete only within a 
single slice, while phoneme and word units compete in proportion to their 
overlap. 

There was some trial and error in finding the set of parameters used in 
the reported simulations, but, in general, the qualitative behavior of the 
model was remarkably robust under parameter variations, and no sys- 
tematic search of the space of parameters was necessary. Generally, ma- 
nipulations of parameters simply influence the magnitude or the timing 
of one effect or another without changing the basic nature of the effects 
observed. For example, stronger bottom-up excitation speeds things up 
and can indirectly influence the size of top-down effects, since, for ex- 
ample, stronger word level activations produce stronger feedback to the 
phoneme level. Stronger top-down excitation, of course, directly influ- 
ences the magnitude of lexical effects. The one parameter that appeared 
to influence the qualitative behavior of the model was the strength of 
within-level inhibition. Stronger within-level inhibition make the model 
commit itself more strongly to slight early differences in activation among 
competing alternatives. There was, therefore, some tuning of this param- 
eter to avoid early overcommitment that would prevent right context from 
exerting an influence under some circumstances. Finally, a low rate of 
feature-level decay was used to allow feature-level activations to persist 
after the input moved on to later slices. 

The parameter values were held constant at the values shown in the 

TABLE 3 
Parameters of TRACE 11 

Parameter 

Feature-phoneme excitation 
Phoneme-word excitation 
Word-phoneme excitation 
Phoneme-feature excitation 
Feature-level inhibition 
Phoneme-level inhibition” 
Word-level inhibition” 
Feature-level decay 
Phoneme-level decay 
Word-level decay 

LI Per three time-slices of overlap. 

Value 

.02 

.05 

.03 

.oo 

.04 

.04 

.03 

.Ol 

.03 

.05 
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table throughout the simulations, except in the simulations of categorical 
perception and trading relations. Since we were not explicitly concerned 
with the effects of feedback to the feature level in any of the other sim- 
ulations, we set the feedback from the phoneme level to the feature level 
to zero to speed up the simulations in all other cases. In the categorical 
perception and trading relations simulations this parameter was set at .05. 
Phoneme-to-feature feedback tended to slow the effective rate of decay 
at the feature level and to increase the effective distinctiveness of different 
feature patterns. Rate of decay of feature-level activations and strength 
of phoneme-to-phoneme competition were set to .03 and .05 to compen- 
sate for these effects. No lexicon was used in the categorical perception 
and trading relations simulations, which is equivalent to setting the pho- 
neme to word excitation parameter to zero. 

THE DYNAMICS OF PHONEME PERCEPTION 
In the introduction, we motivated the approach taken in the TRACE 

model in general terms. In this section, we see that the simple concepts 
that lead to TRACE provide a coherent and synthetic account of a large 
number of different kinds of findings on the perception of phonemes. 
Previous models have been able to provide fairly accurate accounts of a 
number of these phenomena. For example, Massaro and Oden’s feature 
integration model (Massaro, 1981; Massaro & Oden, 1980a, 1980b; Oden 
& Massaro, 1978) accounts in detail for a large body of data on the 
influences of multiple cues to phoneme identity, and the Pisoni/Fujisaki- 
Kawashima model of categorical perception (Fujisaki & Kawashima, 
1968; Pisoni, 1973, 1975) accounts for a large body of data on the con- 
ditions under which subjects can discriminate sounds within the same 
phonetic category. Marslen-Wilson’s COHORT model can account for 
the time course of lexical influences on phoneme identification. What we 
hope to show here is that TRACE brings these phenomena, and several 
others not considered by either model, together into a coherent picture 
of the process of phoneme perception as it unfolds in time. 

The present section consists of three main parts. The first focuses on 
lexical effects on phoneme identification and the conditions under which 
these effects are obtained. Here, we see how TRACE can account for 
the basic lexical effect, and we make it clear why lexical effects are only 
obtained under some conditions. The second part of this section focuses 
on the question of the role of phonotactic rules-that is, rules specifying 
which phonemes can occur together in English-in phoneme identifica- 
tion. Here, we see how TRACE mimics- the apparently rule-governed 
behavior of human subjects, in terms of a “conspiracy” of the lexical 
items that instantiate the rule. The.third part focuses on two aspects of 
phoneme identification often considered quite separately from lexical ef- 
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FIG. 5. Phoneme- and word-level activations at several points in the unfoldit!g of a segment 
ambiguous between lb/ and /p/, followed by /I/, i’i, and igl. See text for a full explanation. 

fects-namely, the contrasting phenomena of cue tradeoffs in phoneme 
perception and categorical perception. Here we see that TRACE provides 
an account of both effects as well as details of their time course. All three 
parts of this section illustrate how the simple mechanisms of mutual ex- 
citation and inhibition among the processing units of the Trace provide a 
natural way of accounting for the relevant phenomena. The section ends 
with a brief consideration of the ways in which TRACE might be ex- 
tended to cope with several other aspects of phoneme identification and 
perception. 

Lexical Effects 
You can tell a phoneme by the company that it keeps.2 In this section, 

we describe a simple simulation of the basic lexical effect on phoneme 
identification reported by Ganong (1980). We start with this phenomenon 
because it, and the related phonemic restoration effect, were among the 
primary reasons why we felt that the interactive-activation approach 
would be appropriate for speech perception as well as visual word rec- 
ognition and reading. 

For the first simulation, the input to the model consisted of a feature 
specification which activated /b/ and /p/ equally, followed by (and partially 
overlapping with) the feature specifications for/l/, then I^/, then /g/. Figure 
5 shows phoneme and word-level activations at several points in the 
unfolding of this input specification. Each panel of the figure represents 

* This title is adapted from the title of a talk by David E. Rumelhart on related phenomena 
in letter perception. These findings are described in Rumelhart and McClelland (1982). We 
thank Dave for his permission to adapt the title. 
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a different point in time during the presentation and concomitant pro- 
cessing of the input. The upper portion of each panel is used to display 
activations at the word level; the lower panel is used for activations at 
the phoneme level. Each unit is represented by a rectangle, labeled with 
the identity of the item the unit stands for. The horizontal extension of 
the rectangle indicates the portion of the input spanned by the unit. The 
vertical position of the rectangle indicates the degree of activation of the 
unit. In this and subsequent figures, activations of the phoneme units 
located between the peaks of the input specifications of the phonemes 
(at Slices 3, 9, 15, etc.) have been deleted from the display for clarity 
(the activations of these units generally get suppressed by the model, 
since the units on the peaks tend to dominate them). The input itself is 
indicated below each panel, with the successive phonemes positioned at 
the temporal positions of the centers of their input specifications. The 
/^/ along the x axis represents the point in the presentation of the input 
stream at which the snapshot was taken. 

The figure illustrates the gradual buildup of activation of the two in- 
terpretations of the first phoneme, followed by gradual buildups in acti- 
vation for subsequent phonemes. As these processes unfold, they begin 
to produce word-level activations. It is difficult to resolve any word-level 
activations in the first few frames, however, since in these frames, the 
information at the phoneme level simply has not evolved to the point 
where it provides enough constraint to select any one particular word. 
In this case, it is only after the lgl has come in that the model has infor- 
mation telling it whether the input is closer to “plug,” “plus,” “blush,” 
or “blood” (TRACE’s lexicon contains no other words beginning with 
/pl^/ or /bl^/). After that point, as illustrated in the fourth panel, “plug” 
wins the competition at the word level and, through feedback support to 
/p/, causes /p/ to dominate /b/ at the phoneme level. The model, then, 
provides an explicit account for the way in which lexical information can 
influence phoneme identification. 

Two things about the lexical effect observed in this case are worthy of 
note. First, the effect is rather small. Second, it does not emerge until 
well after the ambiguous segment itself has come and gone. There is a 
slight advantage of/p/ over /b/ in Frames 2 and 3 of the figure. In these 
cases, however, the advantage is not due to the specitic information that 
this item is the word “plug’‘-the model can have no way of knowing 
this at these points in processing. The slight advantage for /p/ at these 
early points is due to the fact that there are more words beginning with 
/pl/ than /bl/ in the model’s lexicon, and in particular, there are more 
beginning with /pl^/ than /bYI. So, when the input is /?l^d/, with the ? 
standing for the ambiguous /b/-/p/ segment, the model must actually over- 
come this slight /p/-ward bias. Eventually, it does so. 

Figure 6 shows the temporal course of buildup of the strength of the 



26 MC CLELLAND AND ELMAN 

0.00 
0 8 12 18 24 30 36 42 48 54 60 86 72 

Processing Cycles 
FIG. 6. The time course of the buildup in the strength of the /p/ response based on acti- 

vations of phoneme units in Slice 12, in processing an ambiguous /b/-/p/ segment in i-l”g/, 
and the same segment in /-IS/. The ambiguous segment is indicated by the “?“. Also 
shown is the buildup of response strength for processing an unambiguous lpi segment in 
/pl*g/. The vertical line topped with “?” indicates the point in time corresponding to the 
center of the initial segment in the input stream. Successive vertical lines indicate centers 
of successive phonemes. 

/p/ response based on activations of the phoneme units in Slice 12 for 
two cases in which the initial segment is ambiguous between /p/ and /b/. 
In one case, the ambiguous segment is followed by Kg/ (as in “plug”); 
in the other, it is followed by KY (as in “blush”). Given the model’s 
restricted lexicon, which does not contain the word “plush,” the lexical 
effect should lead to eventual dominance of the /p/ response in the first 
case, but a suppression of the /pl response in the second case. The dif- 
ferences between the contexts do not begin to show up until after the 
center of the final phoneme, which occurs at Slice 30. The reason for this 
is simply that the information is not available until that point, because 
the phoneme that signals what the word will be comes at the very end of 
the word. The effect takes another few time slices to begin to influence 
the activation of the initial phoneme, because it percolates to the first 
phoneme by way of the feedback from the word or words that con- 
tain it. 

Elimination of the lexical effect by time pressure. Fox (1982) has re- 
ported that the lexical effect on word initial segments is eliminated if 
subjects are given a deadline to respond within 500 ms of the ambiguous 
segment. Though they can correctly identify unambiguous segments in 
responses made before the deadline, these early responses show no sen- 
sitivity to the lexical status of the alternatives. Similar findings are also 
reported by Fox ( 1984). 

Our model is completely consistent with Fox’s results. Indeed, we have 
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already seen that the activations in the Trace only begin to reflect the 
lexical effect about one phoneme or so after the phoneme that establishes 
the lexical identity of the item. Given that this segment does not occur, 
in Fox’s experiments, until the second or third segment after the ambig- 
uous segment, there is no way that a lexical effect could be observed in 
early responses. 

But what about the fact that early responses to unambiguous segments 
can be accurate? TRACE accounts for this too. In Figure 7 we show the 
state of the Trace at various different points after the unambiguous /b/ in 
/bl^g/. Here, the /b/ dominates the /p/ from the earliest point. The anal- 
ogous result is obtained, when the stimulus is /p/ in /pl^g/, and the acti- 
vation for the initial phoneme is quite independent of whether or not the 
item is a word. The response strength for the case when /pl^g/ is presented 
in Fig. 6 shows that the probability of choosing /p/ is near unity within 
12 processing cycles, or 300 ms of the initial segment, well before the 
deadline would be reached-and well before word identity specifying 
information is available. 

Lexical effects late in a word. In the model, lexical effects on word- 
initial segments develop rather late, at least in the case where there is no 
context preceding the word. Of course, the exact timing of the develop- 
ment of any lexical effect would be dependent upon the set of words 
activated by the stimulus; if one word predominated early on, a lexical 
effect could develop rather earlier. In general, though, word-initial am- 
biguities will require time to resolve on the basis of lexical information. 
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FIG. 7. The state of the Trace at various stages of processing the stream ibl”gi. 
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However, when the ambiguous segment comes late in the word, and the 
information that precedes the ambiguous segment has already established 
which of the two alternatives for the ambiguous segment is correct, 
TRACE shows a lexical effect that develops as the direct perceptual 
information relevant to the identity of the target segment is being pro- 
cessed. This phenomenon is illustrated in Fig. 8, which shows the state 
of the Trace at several points in time relative to an ambiguous final seg- 
ment that could be a /t/ or a /d/, at the end of the context /targ^/. Within 
the duration of a single phoneme after the center of the ambiguous seg- 
ment, /t/ already has an advantage over /d/. We therefore predict that 
Fox’s results would come out differently, were he to use word-final, as 
opposed to word-initial, ambiguous segments. In such a case we would 
expect the lexical effect to show up well within the 500-ms deadline. 

Dependence of the lexical effect on phonological ambiguity. One fur- 
ther aspect of the lexical effect that was noted by Ganong (1980) deserves 
comment. This is the fact that the lexichl effect on the identity of a 
phoneme only occurs with segments which fall in the boundary region 
between two phonemes. For segments which are unambiguous examples 
of one category or the other, the effect is not obtained. TRACE is entirely 
consistent with this aspect of the data. The influence of the lexicon is 
simply another source of evidence, like that coming from the feature 
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FIG. 8. The state of the Trace at several stages of processing the stream consisting of 
1targ-l followed by a segment ambiguous between lti and id/. 
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level, influencing the activation of one phoneme unit or another. When 
the bottom-up input is decisive, it can preempt any lexical bias effects. 
We have verified this in simulations presenting unambiguous tokens of 
/p/ or /b/, followed either by /I*g/ or /IS/. In these simulations, the unit 
for the presented initial segment reaches a very high level of activation, 
independent of the following context. When the segment comes at the 
end of the word, the context exerts stronger effects, thus accounting for 
the fact that speech distortions are easier to detect when they come early 
in a word than when they come late (Marslen-Wilson & Welsh, 1978). 
However, even there, it is possible to override lexically based activations 
with clear bottom-up signals, although there may be some slowing of the 
activation process which would probably show up in reaction times. 

It should be noted that TRACE’s account of lexical effects is quite 
similar to the account offered by the feature integration theory of Massaro 
and Oden (1980a). Indeed, Massaro and Oden’s model provides quanti- 
tative fits to Ganong’s findings. We will make some mention of the slight 
differences in quantitative assumptions between the models below. For 
now, we note a more crucial difference: TRACE incorporates specific 
assumptions about the time course of processing which allows it to ac- 
count for the conditions under which lexical effects will be obtained, as 
well as for the influence (or a lack thereof) of lexical effects on reaction 
times, to which we now turn. 

Absence of lexical effect in some reaction-time studies. Foss and Blank 
(1980) presented some results which seemed to pose a challenge to in- 
teractive models of phoneme identification in speech perception. They 
gave subjects the task of listening to spoken sentences for occurrences 
of a particular phoneme in word-initial position. Reaction time to press 
a response key from the onset of the target phoneme was the dependent 
variable. In one example, the target was /g/ and the sentence was, At the 
end of last year, the government. . . . The subject’s task was simply to 
press the response key upon hearing the /g/ at the beginning of the word 
government. 

The principle finding of Foss and Blank’s study was that it made no 
difference whether the target came at the beginning of a word or a non- 
word. Later studies by Foss and Gernsbacher (1983) indicate that other 
experiments which have found lexical or even semantic and syntactic 
context effects on monitoring latencies are flawed, and that monitoring 
times for word-initial phonemes are primarily influenced by acoustic 
factors affecting phoneme detectability, rather than lexical, semantic, or 
syntactic factors. 

The conclusion that phoneme monitoring is unaffected by the lexical 
status of the target-bearing phoneme string seems at variance with the 
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spirit of the TRACE model, since in TRACE, the lexical level is always 
involved in the perceptual process. However, we have already seen that 
there are conditions under which the lexical level does not get much of 
a chance to exert an effect. In the previous section we saw that there is 
no lexical effect on identification of ambiguous word-initial targets when 
the subject is under time pressure to respond quickly, simply because the 
subject must respond before information is even available that would 
allow the model-or any other mechanism-to produce a lexical effect. 

In the Foss and Blank situation, there is even less reason to expect a 
lexical effect, since the target is not an ambiguous segment. We already 
saw that activation curves rise rapidly for unambiguous segments; in the 
present case, they can reach near-peak levels well before the acoustic 
information that indicates whether the target is in a word or nonword has 
reached the subject’s ear. 

The results of a simulation run illustrating these points are shown in 
Fig. 9. For this example, we imagine that the target is /t/. Note how during 
the initial syllable of both streams, little activation at the word level has 
been established. Even toward the end of the stream, where the infor- 
mation is just coming in which determines that “trugus” is not a word, 
there is little difference, because in both cases, there are several active 
word-level candidates, all supporting the word-initial /t/. It is only after 
the end of the stream that a real chance for a difference has occurred. Well 
before this time arrives, the subject will have made a response, since the 
strength of the /t/ response reaches a level sufficient to guarantee a high 
accuracy by about Cycle 30, well before the end of the word, as illustrated 
in Fig. 10. 

Even though activations are quite rapid for unambiguous segments, 
these can still be influenced by lexical effects, provided that the lexical 
information is available in time. In Fig. 11, we illustrate this point for the 
phoneme /t/ in the streams /sikr^t/ (the word “secret”) and /g^ld^t/ 
(“guldut,” a nonword). The figure shows the strength of the /t/ response 
as a function of processing cycles, relative to all other responses based 
on activations of phoneme units at Cycle 42, the peak of the input spec- 
ification for the /t/. Clearly, response strength grows faster for the /t/ in 
/sikr^t/ than for the /t/ in /g^ld^t/; picking an arbitrary threshold of .9 for 
response initiation, we find that the /t/ in /sikrV reaches criterion about 
3 cycles or 75 ms sooner than the /t/ in /g^ld^t/. 

Studies showing lexical effects in reaction times. Marslen-Wilson 
(1980) has reported an experiment that demonstrates the existence of 
lexical effects in phoneme monitoring for phonemes coming at later points 
in words. For phonemes coming at the beginning of a word or at the end 
of the first syllable, he found no facilitation for phonemes in words rel- 
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FIG. 9. State of the Trace at three different points during the processing of the word 

“target” (itarg”t/) and the nonword “trugus” (ltr’g-4). 

ative to phonemes in nonwords (in fact there was a nonword advantage 
for these early target conditions). For targets occurring at the end of the 
second syllable of a two-syllable word (like “secret’‘-though the stimuli 
in this particular experiment were Dutch) Ma&en-Wilson found an 85- 
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Processing Cycles 
FIG. 10. Time course of growth in the probability of the it/ response based on activations 

of phoneme units in Slice 12, during processing of /targ^tl and /tr^g^s/. The vertical lines 
indicate the peaks on the feature patterns corresponding to the successive phonemes of the 
presented word. 

ms advantage compared to corresponding positions in nonwords. This 
compares quite closely with the value of about 75 ms we obtained for the 
/sikr^t/-/gId^t/ example. At the ends of even longer words, the word ad- 
vantage increased in size to 185 ms. Marslen-Wilson’s result thus con- 
firms that there are indeed lexical effects in phoneme monitoring-even 
for unambiguous inputs-but underscores the fact that there is no word 
advantage for phonemes whose processing can be completed long before 
lexical influences would have a chance to show up. 

Processing Cycles 
FIG. 11. Probability of the /tf response as a function of processing cycles, based on acti- 

vation of phoneme units at Cycle 42, for the stream /sikr^t/ (“secret”) and /g”ld^t/ 
(“guldut”). Vertical lines indicate the peaks of the input patterns corresponding to the 
successive phonemes in either stream. 
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The TRACE model and Marslen-Wilson’s COHORT model (Marslen- 
Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978) offer fairly similar 
interpretations of lexical effects in phoneme monitoring. Both models 
account for the growth in the effect as a function of position in the word. 
As in COHORT, lexical effects in TRACE depend on the point at which 
the pattern of activation at the word level begins to specify the identities 
of the phonemes. In COHORT, there is a discrete moment when this 
occurs-when the cohort of items consistent with the input is reduced 
to a single item. In TRACE, things are not quite so discrete. However, 
it will still generally be the case in TRACE that the size of the lexical 
effect will vary with the location of the “unique point,” the point at which 
the bottom-up input remains consistent with only a single word. How- 
ever, since Marslen-Wilson’s experiments were performed with Dutch 
words, we have not been able to simulate his experimental demonstration 
of this effect in detail. 

TRACE and COHORT make similar predictions in some situations, 
but not in all. In the next section, we consider a phenomenon which 
TRACE accounts for via the same mechanisms it uses to account for the 
lexical effects we have been considering. Here, the graded feedback from 
the word level to the phoneme level allows TRACE to account for an 
effect that would not be predicted by COHORT, unless additional as- 
sumptions were made. 

Are Phonotactic Rule Effects the Result of a Conspiracy? 
Recently, Massaro and Cohen (1983) have reported evidence they take 

as support for the use of phonotactic rules in phoneme identification. In 
one experiment, Massaro and Cohen’s stimuli consisted of phonological 
segments ambiguous between /r/ and /I/ in different contexts. In one con- 
text (/t-i/) /r/ is permissible in English, but /Y is not. In another context 
(/s-i/) /l/ is permissible in English but irl is not. In a third context (/f-i/) 
both are permissible, and in a fourth (/v-i/) neither is permissible. Massaro 
and Cohen found a bias to perceive ambiguous segments as /r/ when /r/ 
was permissible or as /I/ when /l/ was permissible. No bias appeared in 
either of the other two conditions. 

With most of these stimuli, phonotactic acceptability is confounded 
with the actual lexical status of the item; thus /fli/ and /fri/ (“flee” and 
“free”) are both words, as is /tri/ but not /tli/. In the /s-i/ context, how- 
ever, neither /sli/ or /Sri/ are words, yet Massaro and Cohen found a bias 
to hear the ambiguous segment as /I/, in accordance with phonotactic 
rules. 

It turns out that TRACE produces the same effect, even though it lacks 
phonotactic rules. The reason is that the ambiguous stimulus produces 
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partial activations of a number of words (“sleep” and “sleet” in the 
model’s lexicon; it would also activate “sleeve,” “sleek,” and others in 
a model with a fuller lexicon). None of these word units gets as active 
as it would if the entire word had been presented. However, all of them 
(in the simulation, there are ony two, but the principle still applies) are 
partially activated, and all conspire together and contribute to the acti- 
vation of /l/. This feedback support for the /l/ allows it to dominate the 
/r/, just as it would if /sli/ were an actual word, as shown in Fig. 12. 

The hypothesis that phonotactic rule effects are really based on word 
activations leads to a prediction: that we should be able to reverse these 
effects if we present items that are supported strongly by one or more 
lexical items even if they violate phonotactic rules. A recent experiment 
by Elman (1983) confirms this prediction. In this experiment, ambiguous 
phonemes (for example, halfway between /b/ and /d/) were presented in 
three different types of contexts. In all three types, one of the two (in this 
case, the /d/) was phonotactically acceptable, while the other (the /b/) 
was not. However, the contexts differed in their relation to words. In one 
case, the legal item actually occurred in a word (“bwindle”-“dwindle”). 
In a second case, neither item made a word, but the illegal item was very 
close to a word (“bwacelet’‘-“ dwacelet”). In a third case, neither item 

FIG. 12. State of the Trace at several points in processing a segment ambiguous between 
ill and /r/, in the context is-ii. The units for “sleep” (/slip/) and “sleet” (/slit/) are boxed 
together since they take on identical activation values. 
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was particularly close to a word (“bwiffle’‘-“dwiffle”). Results of the 
experiment are shown in Table 4. The existence of a word identical to 
one of the two alternatives or differing from one of the alternatives by a 
single phonetic feature of one phoneme strongly influenced the subject’s 
choices between the two alternatives. Indeed, in the case where the pho- 
notactically irregular alternative (“bwacelet”) was one feature away from 
a particular lexical item (“bracelet”), subjects tended to hear the ambig- 
uous item in accord with the similar lexical item (that is, as a /b/) even 
though it was phonotactically incorrect. 

To determine whether the model would also produce such a reversal 
of the phonotactic rule effects with the appropriate kinds of stimuli, we 
ran a simulation using a simulated input ambiguous between /p/ and /t/ in 
the context /-luli/. /p/ is phonotactically acceptable in this context, but 
/t/ in this context makes an item that is very close to the word “truly.” 
The results of this run, at two different points during processing, are 
shown in Fig. 13. Early on in processing, there is a slight bias in favor 
of the /p/ over the /t/, because at first a large number of /pl/ words are 
slightly more activated than any words beginning with /t/. Later, though, 
the /t/ gets the upper hand as the word “truly” comes to dominate at the 
word level. Thus, by the end of the word or shortly thereafter, the closest 
word has begun to play a dominating role, causing the model to prefer 
the phonotactically inappropriate interpretation of the ambiguous initial 
segment. 

Of course, at the same time the word “truly” tends to support /r/ rather 
than /l/ for the second segment. Thus, even though this segment is not 
ambiguous, and the /I/ would suppress the it-1 interpretation in a more 
neutral context, the /r/ stays quite active. 

Trading Relations and Categorical Perception 
In the simulations considered thus far, phoneme identification is influ- 

enced by two different kinds of factors, featural and lexical. When one 
sort of information is lacking, the other can compensate for it. The image 

TABLE 4 
Percentage Choice of Phonotactically Irregular Consonant 

Stimulus type Example 
Percentage of identifications 

as “illegal” phoneme” 

Legal word/illegal nonword 
Legal nonword/illegal nonword 
Legal nonwordiillegal nearword 

dwindleibwindle 37 
dwiffleibwiffle 46 
dwacelet/bwacelet 55 

” F(2,34) = 26.414, p < .OOl. 
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that emerges from these kinds of findings is of a system that exhibits 
great flexibility by being able to base identification decisions on different 
sources of information. It is, of course, well established that within the 
featural domain each phoneme is generally signaled by a number of dif- 
ferent cues, and that human subjects can trade these cues off against each 
other. The TRACE model exhibits this same flexibility, as we detail 
shortly. 

But there is something of a paradox. While the perceptual mechanisms 
exhibit great flexibility in the cues that they rely on for phoneme identi- 
fication, they also appear to be quite “categorical” in nature. That is, 
they produce much sharper boundaries between phonetic categories than 
we might expect based on their sensitivity to multiple cues; and they 
appear to treat acoustically distinct feature patterns as perceptually 
equivalent, as long as they are identified as instances of the same pho- 
neme. 

In this section, we illustrate that in TRACE, just as in human speech 
perception, flexibility in feature interpretation-specifically, the ability 
to trade one feature of a phoneme off against another-coexists with a 
strong tendency toward categorical perception. 

For these simulations, the model was stripped down to the essential 
minimum necessary, so that the basic mechanisms producing cue trade- 
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offs and categorical perception could be brought to the fore. The word 
level was eliminated altogether, and at the phoneme level there were only 
three phonemes, /a/, /g/, and /k/, plus silence (/-/). From these four items, 
inputs and percepts of the form /-ga-/ and /-ka-/ could be constructed. 
The following additional constraints were imposed on the feature speci- 
fications of each of the phonemes: (1) the /a/ and /-/ had no overlap with 
either /g/ or /k/, so that neither /a/ nor /-I would bias the activations of 
the /g/ and lki phoneme units where they overlapped with the consonant; 
(2) /g/ and /k/ were identical on five of the seven dimensions, and differed 
only on the remaining two dimensions. 

The two dimensions which differentiated /g/ and lki were voice onset 
time (VOT) and the onset frequency of the first formant (FIOF). These 
dimensions replaced the voicing and burst amplitude dimensions used in 
all of the other simulations. Figure 14 illustrates how FlOF tends to 
increase as voice onset time is delayed. 

Summer-field and Haggard (1977) have shown that subjects are sensitive 
both to VOT and to FlOF and that it is possible to trade one of these 
cues off against the other. Thus, the boundary between /gal and /ka/ shifts 
to longer VOTs when Fl starts off lower rather than higher. 

Categorical perception and trading relations among cues have been 
studied on a variety of different continua by a variety of different inves- 
tigators. We have chosen to focus on the VOT and FlOF features, as 
exemplified by the /gal-ikal continuum, because there is data on trade- 
offs between these cues (Summerfield & Haggard, 1977), and because 

2000 

FIG. 14. Schematic diagram of a syllable that will be heard as /gal or /ka/, depending on 
the point in the syllable at which voicing begins. Prior to the onset of voicing, F2 (top 
curve) is energized by aperiodic noise sources, and Fl is “cut back” (the noise source has 
little or no energy in this range). Because of the fact that Fl rises over time after syllable 
onset (as the vocal tract moves from a shape consistent with the consonant into a shape 
consistent with the vowel), its frequency at the onset of voicing is higher for later values 
of VOT. Parameters used in constructing this schematic syllable are derived from Kewley- 
Port’s (1982) analysis of the parameters of formants in natural speech, and are similar to 
those used in many perceptual experiments. 
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several categorical perception studies of VOT continua (using /g/-/k/, 
/d/-/t/, or /b/-/p/ stimuli) have covaried both VOT and FlOF, if only 
because FIOF tends to covary with VOT when realistic stimuli are used 
(e.g., Pisoni & Lazarus, 1974; Samuel, 1977). Though the simulations use 
a /g/-/k/ continuum, we consider several categorical perception experi- 
ments using /d/-It/ and /b/-/p/ continua, since the same dimensions can 
differentiate the two members of both of these other pairs. We also con- 
sider data obtained in experiments on other continua, using other cues. 
We could easily have repeated the simulations with other sets of continua; 
however, the general qualitative form of the results would be the same. 
What would vary from case to case would be the magnitude of the effect 
of a step along a given dimension. 

The pattern of excitatory input to the VOT and FlOF detectors pro- 
duced by the canonical mock speech /gl and lkl used in the simulations 
are illustrated in Fig. 15. 

Trading relations. TRACE quite naturally tends to produce trading 
relations between features, since it relies on the weighted sum of the 
excitatory inputs to determine how strongly the input will activate a par- 
ticular phoneme unit. All else being equal, the phoneme unit receiving 
the largest sum bottom-up excitation will be more strongly activated than 
any other, and will therefore be the most likely response when a choice 
must be made between one phoneme and another. Since the net bottom- 
up input is just the sum of all of the inputs, no one input is necessarily 
decisive in this regard. 

Generally, experiments demonstrating trading relations between two or 
more cues manipulate each of the cues over a number of values ranging 
between a value more typical of one of two phonemes and a value more 
typical of the other. Summerfield and Haggard did this for VOT and 
FlOF, and found the typical result, namely that the value of one cue that 
gives rise to 50% choices of lkl was affected by the value of the other 
cue: the higher the value of FlOF, the shorter the value of VOT needed 
for 50% choices of lkl. Unfortunately, they did not present full curves 
relating phoneme identification to the values used on each of the two 
dimensions. In lieu of this, we present curves in Fig. 16 from a classic 
trading relations experiment, by Denes (1955). Similar patterns of results 
have been reported in other studies, using other cues (e.g., Massaro, 
1981, Figs. 4 and 5), though the transitions are often somewhat steeper 
(see below for a discussion of the issue of steepness). We have chosen 
to present the shallower curves reported by Denes because in them we 
see clearly that there are cases in which a cue that favors one of the two 
phonemes to a moderate degree will give rise to the perception of the 
other phoneme when paired up with a strong cue that favors the other 



TRACE MODEL 

I .oo 

3 a t /g/ 12345 /k/ 
c 075 - 

w 
0 

I= 4 0.50 - 

2 
al 
(3 

$I 025 - 

0 00 I 
0 1 2 3 ‘I 5 6 7 8 9 10 

Voice Onset Time 

1 00 

0 00 J 
0 1 2 3 4 5 6 7 6 9 10 

Fl Onset Frequency 

39 

FIG. 15. Canonical feature-level input for/g/ and iki. on the two dimensions that distinguish 
them, and the patterns used for the five intermediate values used in the trading relations 
simulation. Along the abscissa of each dimension the nine units for the nine different value 
ranges of the dimension are arrayed. The curves labeled lgi and /k/ indicate the relative 
strength of the excitatory input to each of these units, produced by the indicated phoneme. 
The canonical curves also indicate the strengths of the feature-to-phoneme connections for 
lgi and lki on these dimensions. That is. the canonical input pattern for each phoneme 
exactly matches the strengths of the corresponding feature-phoneme connections. Num- 
bered curves on each dimension show the feature patterns used in the trading relations 
simulation. 

phoneme. An additional finding is the bowing of the curves; they tend to 
be approximately linear through the middle of their range, but to level 
off at both ends, where the values on both dimensions agree in pointing 
to one alternative or the other. 

To see if TRACE would simulate the basic trade-off effect obtained by 
Summerfield and Haggard, and to see if it would produce the same shape 
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FIG. 16. Results of an experiment demonstrating the trade-off between two cues to the 
identity of Is/ and lzi. Data from Denes, 1955, fitted by the model of Massaro and Cohen, 
1977. l ,50 ms; 0, 100 ms; n , 150 ms; A, 200 ms. Reprinted with permission from Massaro 
and Cohen (1977). 

trade-off curves as have been generally reported, we generated a set of 
25 intermediate phonetic segments made up by pairing each of five dif- 
ferent intermediate patterns on the VOT dimension with each of five 
different intermediate patterns on the FlOF dimension. The different 
feature patterns used on each dimension are shown in Fig. 15, along with 
the canonical feature patterns for Igl and /k/ on each of the two dimen- 
sions. On the remaining five dimensions, the intermediate segments all 
had the common canonical feature values for /g/ and /k/. 

The model was tested with each of the 25 stimuli, preceded by silence 
(/-I> and followed by /a-/. In this and all subsequent simulations we report 
in this paper, the peak of the initial silence phoneme occurred at Time 
Slice 6 in the input, and the peaks of successive phoneme segments oc- 
curred at six slice intervals. Thus, for these stimuli, the peak on the 
intermediate phonetic segment occurred at Slice 12, the peak of the fol- 
lowing vowel occurred at Slice 18, and the peak of the final silence oc- 
curred at Slice 24. For each input presented, the interactive activation 
process was allowed to continue through a total of 60 time slices, well 
past the end of the input. The state of the Trace at various points in 
processing, for the most /g/-like of the 25 stimuli, is shown in Fig. 17. At 
the end of the 60th time slice, we recorded the activation of the units for 
/gl and /k/ in Time Slice 12 and the probability of choosing lgl based on 
these activations. (It makes no difference to the qualitative appearance 
of the results if a different decision time is used; earlier decision times 
are associated with smaller differences in relative activation between the 
/g/ and /k/ phoneme units, and later ones with larger differences, but the 
general pattern is the same.) 
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-Xa- -X.3- -Xa- +2 -Xa- +4 
FIG. 17. The state of the Trace at various points during and after the presentation of a 

syllable consisting of the most /g/-like of the 25 intermediate segments used in the trading 
relations experiment, represented by /Xi. preceded by silence and followed by /a/, then 
another silence. 

Response probabilities were computed using the formulas given earlier 
for converting activations to response strengths and strengths into prob- 
abilities. The resulting response probabilities, for each of the 25 condi- 
tions of the experiment, are shown in Fig. 18. The pattern of results is 
quite similar to that obtained in Denes (19.55) experiment on the /s/-/z/ 
continuum. The contribution of each cue is approximately linear and 
additive in the middle of the range, but the curves flatten out at the 
extremes, as in the Denes (19.55) experiment. More importantly, the mod- 
el’s behavior exhibits the ability to trade one cue off against another. For 
example, there are three different combinations of feature values which 
lead to a probability between .82 and .85 of choosing ikl: (1) the neutral 
value of the VOT dimension coupled with the most /k/-like value on the 
FIOF dimension; (2) the neutral value on the FIOF dimension coupled 
with the most /k/-like value of the VOT dimension; and (3) the somewhat 

0 I 3 4 5 6 
Vorce Onset Time 

FIG. 18. Simulated probability of choosing lki at Time Slice 60. for each of the 25 stimuli 
used in the trading relations simulation experiment. Numbers next to each curve refer to 
the intermediate pattern on the FIOF continuum used in the five stimuli contributing to 
each curve. Higher numbers correspond to higher values of FIOE 
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/k/-like values on both dimensions. In terms of Summerfield and Hag- 
gard’s measure, the value of VOT needed to achieve 50% probability of 
reporting /k/, we can see that the VOT needed increases as the FlOF 
decreases, just as these investigators found. 

Cue trade-offs in phoneme identification are accounted for in detail by 
the feature integration model of Oden and Massaro (1978; Massaro, 1981; 
Massaro and Oden, 1980a, 1980b). While we have shown how TRACE 
can account for the basic trade-off effect and the general form of the 
trade-off curves, we have not yet attempted the kinds of detailed fits that 
Massaro, Oden, and collaborators have reported in a number of studies. 
However, the models are quite similar, so it seems rather unlikely that 
cue trade-off data would be able to discriminate between them. And both 
make special assumptions about lack of invariance of cues to phoneme 
identity across contexts. 

One apparent dissimilarity between the models deserves comment. 
Whereas cue strengths are combined multiplicatively in the determination 
of response strengths in the feature integration model, they are combined 
additively in the bottom-up inputs to the units in TRACE. However, in 
TRACE, two further computational steps take place before these inputs 
result in response strengths. First, the interactive-activation process en- 
hances differences between competing units. Second, the resulting unit 
activations are subjected to an exponential transformation. Just this 
second step by itself would transform influences that have additive effects 
on unit activations into influences that have multiplicative effects on re- 
sponse strength. Thus, the models would be mathematically equivalent 
if the interactive activation process were simply replaced by a linear, 
additive combination of inputs to the units. In quantitative formulations 
of the interactive activation process closely related to the ones we use 
(Grossberg, 1978), what the interactive activation process does is simply 
rescale the unit activations, preserving the ratios of their bottom-up 
activation but keeping them bounded. Though our version of these equa- 
tions does not do this exactly, the ways in which it deviates from this 
would be difficult to use as the basis for an empirical distinction between 
the TRACE approach and the feature integration model. Thus, up to a 
point, we can see TRACE as (approximately) implementing the compu- 
tations specified in Oden and Massaro’s model. The models differ, 
though, in that TRACE is dynamic and in that it incorporates feedback 
to the phoneme level. This allows TRACE to account for categorical 
perception in a different way. 

Categorical perception. In spite of the fact that TRACE is quite flexible 
in the way it combines information from different features to determine 
the identity of a phoneme, the model is quite categorical in its overt 
responses. This is illustrated in two ways: first, the model shows a much 
sharper transition in its choices of responses as we move from /g/ to /k/ 
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along the VOT and FlOF dimensions than we would expect from the 
slight changes in the relative excitation of the Is/ and /k/ units. Second, 
the model tends to obliterate differences between different inputs which 
it identifies as the same phoneme, while sharpening differences between 
inputs assigned to different categories. We will consider each of these 
two points in turn, after we describe the stimuli used in the simulations. 

Eleven different consonant feature patterns were used, embedded in 
the same simulated /--a-/ context as in the trading relations simulation. 
The stimuli varied from very low values of both VOT and FlOF, more 
extreme than the canonical /g/, through very high values on both dimen- 
sions, more extreme than the canonical lki. All the stimuli were spaced 
equal distances apart on the VOT and FlOF dimensions. The locations 
of the peak activation values on each of these two continua are shown 
in Fig. 19. 

Figure 20 indicates the relative initial bottom-up activation of the /g/ 
and /k/ phoneme units for each of the I1 stimuli used in the simulation. 
The first thing to note is that the relative bottom-up excitation of the two 
phoneme units differ only slightly. For example, the canonical feature 
pattern for igl sends 75% as much excitation to /g/ as it sends to /k/. The 
feature pattern two steps toward igl from lki (Stimulus 5). sends 88% as 
much activation to lgi as to lki. 

The figure also indicates, in the second panel, the resulting activations 

/d /k/ 
1 2 3 4 5 6 7 6 91011 

I I I 
0 1 2 3 4 5 6 7 6 9 

Voice Onset Time 

/id /k/ 
1 2 3 4 5 6 ‘7 8 91011 

Fl Onset Frequency 
FIG. 19. Locations of peak activations along the VOT and FlOF dimensions, for each of 

the 11 stimuli used in the categorical perception simulation. 
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FIG. 20. Effects of competition on phoneme activations. The first panel shows relative 
amounts of bottom-up excitatory input to lgi and /k/ produced by each of the 11 stimuli 
used in the categorical perception simulation. The second panel shows the activations of 
units for lg/ and /k/ at Time Cycle 60. Stimuli 3 and 9 correspond to the canonical lgi and 
Ikl, respectively. 

of the units for /g/ and /k/ at the end of 60 cycles of processing. The slight 
differences in net input have been greatly amplified, and the activation 
curves exhibit a much steeper transition than the relative bottom-up ex- 
citation curves. 

There are twb reasons why the activation curves are so much sharper 
than the initial bottom-up excitation functions. The primary reason is 
competitive inhibition. The effect of the competitive inhibition at the pho- 
neme level is to greatly magnify the slight difference in the excitatory 
inputs to the two phonemes. It is easy to see why this happens. Once 
one phoneme is slightly more strongly activated than the other, it exerts 
a stronger inhibitory influence on the other than the other can exert on 
it. The net result is that “the rich get richer.” This general property of 
competitive inhibition mechanisms was discussed by McClelland and Ru- 
melhart (1981), following earlier observations by Grossberg (see Gross- 
berg, 1978, for a discussion) and Levin (1976); it is also well known as 
one possible basis of edge enhancement effects in low levels of visual 
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information processing. A second cause of the sharpening of the activa- 
tion curves is the phoneme-to-feature Feedback, which we consider in 
detail in a moment. 

The identification functions that result from applying the Lute choice 
rule to the activation values shown in the second panel of Fig. 20 are 
shown in Fig. 21 along with the 1BX discrimination function, which is 
discussed below. The identification functions are even sharper than the 
activation curves; there is only a 4% chance that the model will choose 
lkf instead of lgf for Stimulus 5, for which /k/ receives 88% as much 
bottom-up support as /g/. The increased sharpness is due to the properties 
of the response strength assumptions. These assumptions essentially im- 
plement the notion that the sensitivity of the decision mechanism, in 
terms of d’ for choosing the most strongly activated of two units, is a 
linear function of the difference in activation of the two units. When the 
activations are far enough apart, d’ will be sufficient to ensure near-loo% 
correct performance, even though both units have greater than 0 activa- 
tion. Of course, the amount of separation in the activations that is nec- 
essary for any given level of performance is a matter of parameters; the 
relevant parameter here is the scale factor used in the exponential trans- 
formation of activations. The value used for this parameter in the present 
simulations (IO) was the same as that used in all other cases where we 
translate activation into response probability, including the trading rela- 
tions simulation. 

Some readers may be puzzled as to why TRACE II exhibits a sharp 
identification function in the categorical perception experiment, but 
shows a much more gradual transition between /g/ and /k/ in the trading 
relations simulation. The reason is simply that finer steps along the VOT 
and FlOF continua were used in the trading relations simulation. All of 
the stimuli for the trading relations simulation lie between Stimuli 6 and 
4 in the categorical perception simulation. 

FIG. 21. 
Stimulus 

Simulated identification functions and forced-choice accuracy in the ABX task. 
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This obviously brings out the fact that the apparent steepness of the 
identification function depends on the grain of the sampling of different 
points along the continuum between two stimuli, as well as a host of 
other factors (Lane, 1965). Whether an empirical or simulated identifi- 
cation function looks steep or not depends on the selection of stimuli by 
the experimenter or modeler. However, it is worth noting that the steep- 
ness of the identification function is independent of the presence of 
trading relations, at least in the simulation model. That is, if we had used 
more widely separated steps along the VOT and FIOF dimension, we 
would have obtained much steeper identification functions. The additivity 
of excitatory inputs would still apply, and thus it would still be possible 
to trade cues off against each other. 

In TRACE, the categorical output of the model comes about only after 
an interactive competition process that greatly sharpens the differences 
in the activation of the detectors for the relevant units. This interactive 
process takes time. In the simulation results reported here, we assumed 
that subjects waited a fixed time before responding. But, if we assume 
that subjects are able to respond as soon as the response strength ratio 
reaches some criteria1 level, we would find that subjects would be able 
to respond more quickly to stimuli near the prototype of each category 
than they can to stimuli near the boundary. This is exactly what was 
found by Pisoni and Tash (1974). 

The sharpening the model imposes on the identification function, in 
conjunction with the fact that it can trade one feature off against another, 
shows how the model, like human perceivers of speech, can be both 
flexible and decisive at the same time. These aspects of TRACE are 
shared with the feature integration model (Massaro, 1981). However, the 
TRACE model’s decisiveness extends even further than we have ob- 
served thus far; feedback from the phoneme to the feature level tends to 
cause the model to obliterate the differences between input feature pat- 
terns that result in the identification of the same phoneme, thus allowing 
the model to provide an account not only for sharp identification func- 
tions, but also for the fact that discriminability of speech sounds is far 
poorer within categories than it is between categories. 

Strictly speaking, at least as defined by Liberman, Cooper, Shank- 
weiler, and Studdert-Kennedy (1967), true categorical perception is only 
exhibited when the ability to discriminate different sounds is no better 
than could be expected based on the assumption that the only basis a 
listener has for discrimination is the categorical assignment of the stim- 
ulus to a particular phonetic category. However, it is conceded that 
“true” categorical perception in this sense is never in fact observed 
(Studdert-Kennedy, Liberman, Harris, & Cooper, 1970). While it is true 
that the discrimination of sounds is much better for sounds which per- 
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ceivers assign to different categories than for sounds they assign to the 
same category, there is also at least a tendency for discrimination to be 
somewhat better than predicted by the identification function, even be- 
tween stimuli which are always assigned to the same category. TRACE 
II produces this kind of approximate categorical perception. 

The way it works is this. When a feature pattern comes in, it sends 
more excitation to some phoneme units than others; as they become 
active, they begin to compete, and one gradually comes to dominate the 
others. This much we have already observed. But as this competition 
process is going on, there is also feedback from the phoneme level to the 
feature level. Thus, as a particular phoneme becomes active, it tends to 
impose its canonical pattern of activation on the feature level. The effect 
of the feedback becomes particularly strong as time goes on, since the 
feature input only excites the feature units very briefly; the original pat- 
tern of activation produced by the phoneme units is, therefore, gradually 
replaced by the canonical pattern imposed by the feedback from the pho- 
neme level. The result is that the pattern of activation remaining at the 
feature level after 60 cycles of processing has become assimilated to the 
prototype. In this way, feature patterns for different inputs assigned to 
the same category are rendered nearly indistinguishable. 

An impression of the magnitude of this effect is illustrated in Fig. 22, 
which shows how different the feature patterns of adjacent stimuli are at 
the end of 60 cycles of processing. The measure of difference is simply 
l - rczb, where rc,b stands for the correlation of the patterns produced by 
stimuli a and b. Only the two dimensions which actually differ between 
the canonical /g/ and /k/ are considered in the difference measure. Fur- 
thermore, the correlation considers only the feature pattern on the feature 

FIG. 22. Differences between patterns of activation at the feature level at Cycle 60, for 
pairs of stimuli one step apart along the /g/-/k/ continuum used for producing the identifi- 
cation functions shown previously in Fig. 21. The difference measure is the correlation of 
the two patterns, subtracted from 1.0; thus, if the two patterns correlated perfectly, their 
difference would be 0. 
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units in Time Slice 12, right at the center of the input specification. If all 
dimensions are considered, the values of the difference measure are re- 
duced overall, but the pattern is the same. Inclusion of feature patterns 
from surrounding slices likewise makes little difference. 

To relate the difference between two stimuli to probability correct 
choice performance in the ABX task generally used in categorical per- 
ception experiments, we once again use the Lute (1959) choice model. 
The probability of identifying stimulus x with alternative a in is given 
by 

where S,, is the “strength” of the similarity between a and X. This is 
given simply by the exponential of the correlation of a and X: 

and similarly for s,. (The exponential transformation is required to trans- 
late correlations, ranging from + 1 to - 1, into positive values, so that 
Lute’s ratio rule can be used. The same transformation is used for trans- 
lating activations into response strengths in identification tasks.) Here k, 
is the parameter that scales the relation between correlations and 
strengths. These assumptions are consistent with the choice assumptions 
made for identification responses. The resulting response probabilities, 
for one choice of the parameter k, (5) are shown in Fig. 21 (the exponen- 
tiation parameter k, is different than the parameter k used in generating 
identification probabilities from activations because correlations and ac- 
tivations are not on equivalent scales). 

Basically, the figure shows that the effect of feedback is to make the 
feature patterns for inputs well within each category more similar than 
those for inputs near the boundary between categories. Differences be- 
tween stimuli near the prototype of the same phoneme are almost obli- 
terated. When two stimuli straddle the boundary, the feature-level pat- 
terns are much more distinct. As a result, the probability of correctly 
discriminating stimuli within a phoneme category is much lower than the 
probability of discriminating stimuli in different categories. 

The process of “canonicalization” of the representation of a speech 
sound via the feedback mechanism takes time. During this time, two 
things are happening: one is that the activations initially produced by the 
speech input are decaying; another is that the feedback, which drives the 
representation toward the prototype, is building up. In the simulations, 
we allowed a considerable amount of time for these processes before 
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computing similarities of different activation patterns to each other. Ob- 
viously, if we had left less time, there would not have been as much of 
an opportunity for these forces to operate. Thus, TRACE is in agreement 
with the finding that there tends to be an increase in within-category 
discrimination when a task is used which allows subjects to base their 
responses on judgments of the similarity of stimuli spaced closely to- 
gether in time (Pisoni & Lazarus, 1974). 

It should be noted that it would be possible to account for categorical 
perception in TRACE without invoking feedback from the phoneme level 
to the feature level. All we would need to do is assume that the feature 
information that gives rise to phoneme identification is inaccessible, as 
proposed by the motor theory of speech perception (Liberman et al., 
1967), or is rapidly lost as proposed by the “dual-code” model (Fujisaki 
& Kawashima, 1968; Massaro, 1975, 1981; Pisoni, 1973, 1975.) The dual- 
code model, which has had considerable success accounting for categor- 
ical perception data, assumes that phoneme identification can be based 
either on precategorical information or on the results of the phoneme 
identification process. Since it is assumed that feature information decays 
rapidly (especially for consonant features-see below), responses must 
often be based solely on the output of the phoneme identification process, 
which is assumed to provide a discrete code of the sequence of phonemes. 
This interpretation accounts for much of the data on categorical percep- 
tion quite well. Indeed, it is fairly difficult to find ways of distinguishing 
between a feedback model and one that attributes categorical perception 
to a loss of information from the feature level coupled with a reliance on 
a more abstract code. Both feedback models and dual code models can 
accommodate the fact that vowels show less of a tendency toward cat- 
egorical perception than consonants (Fry, Abramson, Eimas, & Lib- 
erman, 1962; Pisoni, 1973). It is simply necessary to assume that vowel 
features are more persistent than consonant features (Crowder, 1978, 
1981; Fujisaki & Kawashima, 1968; Pisoni, 1973, 1975). However, the 
two classes of interpretations do differ in one way. The feedback account 
seems to differ most clearly from a limited feature access account in its 
predictions of performance in discriminating two stimuli, both away from 
the center of a category, but still within it. Here, TRACE tends to show 
greater discrimination than it shows between stimuli squarely in the 
middle of a category. 

Standard interpretations of categorical perception can account for in- 
creases in discriminability near the boundary between two categories 
(where identification may in fact be somewhat variable), simply in terms 
of the fact that marginal stimuli are more likely to give rise to different 
category labels. But TRACE can account for increases in discriminability 
at extreme values of feature continua which would not give rise to dif- 
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ferent category labels. In TRACE, the reason for this increase in discrim- 
inability is that the activation of the appropriate item at the phoneme 
level is weaker, and therefore the feedback signal is weaker, than it is 
when the input occurs near the center of the category. For example, 
Stimulus 1 in our simulations falls below the canonical /g/ stimulus, and 
therefore activates the /g/ phoneme detector less strongly than stimuli 
closer to the canonical /g/. A similar thing happens with the /k/. This 
results in less “canonicalization” of the extreme stimuli, and produces a 
“W’‘-shaped discrimination function, as shown in Fig. 22. 

There is some evidence bearing on this aspect of TRACE’s account of 
categorical perception. Samuel (1977) has reported ABX discrimination 
data that show noticeable minima in the discrimination function near the 
canonical stimuli within each category on a /d/-/t/ continuum. Indeed, 
Samuel’s account of this effect, though not couched in terms of interac- 
tive activation processes, has a great deal of similarity to what we see in 
TRACE; he suggests that near-canonical items are more strongly assim- 
ilated to the canonical pattern. Unfortunately the effect we seek is fairly 
subtle, and so it will be difficult to separate from noise. In Samuel’s 
experiment, the effect is fairly clear-cut at both extremes of the VOT 
continuum in three observers at the end of extensive training, as shown 
in Fig. 23, and even unpracticed subjects tend to show the effect toward 
the high end of the VOT continuum, well past the prototype for /t/. 

In summary, TRACE appears to provide a fairly accurate account of 
the phenomena of cue trade-offs and categorical perception of speech 
sounds. It accounts for categorical perception without relying on the no- 
tion that the phenomenon depends on readout from an abstract level of 
processing; it assumes instead that the feature level, like other levels of 
the system, is subject to feedback from higher levels which actually 
changes the representation as it is being retained in memory, pushing it 
toward a canonical representation of the phoneme most strongly activated 
by the input. 

Other Phenomena at the Phoneme Level 
The literature on phoneme perception includes several further tindings 

we have not yet been able to consider in detail. The next few paragraphs 
consider one of these findings and how it might be accommodated in the 
TRACE model. 

Effects of global and local context on phoneme identification. In our 
simulations of trading relations, we have shown that the criteria1 value 
needed on one dimension of stimulus variation can be affected by other 
dimensions. Thus, when the onset of Fl is relatively high, shorter voicing 
latencies are needed to perceive a sound as unvoiced. Other factors also 
influence the phoneme perceived as a result of a particular featural input. 
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FIG. 23. Identification (solid curves) and ABX discrimination data (dashed curves) from 

three practiced and three naive subjects. Simplified and reprinted, with permission, from 
Samuel (1977). 

The identity of phonemes surrounding a target phoneme, the rate of 
speech of a syllable in which a particular feature value occurs, as well as 
characteristics of the speaker and the language being spoken all influence 
the interpretations of features. See Repp and Liberman (1984) for a dis- 
cussion of all of these sorts of influences on the boundaries between 
phonemes. 

It has been suggested by Miller, Green, and Schermer (1984) and by 
Repp and Liberman (1984) that these different effects may have different 
sources. In particular, Miller et al. (1984) suggest that lexical effects and 
semantic and syntactic influences on the one hand may be due to a dif- 
ferent mechanism than influences such as speech rate and coarticulatory 
influences due to local phonetic context. 

The assumptions we have incorporated into TRACE make a similar 
distinction. In TRACE I, we have accounted for effects of phonetic con- 
text by allowing activations of units to influence the feature-to-phoneme 
connections in adjacent time slices (see Elman & McClelland, in press, 
for details). In the discussion, we consider ways of extending the con- 
nection modulation idea to accommodate effects of variations in rate and 
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speaker parameters. Our main point here is that connection modulation 
is quite a different mechanism than the simple additive combination of 
excitatory influences that underlies the way TRACE accounts for trade- 
offs among the cues to a single phoneme or for the effects of top-down 
influences on the phoneme boundary. 

Summary of Phoneme Zdentification Simulations 
We have considered a number of phenomena concerning the identifi- 

cation and perception of phonemes. These include lexical influences on 
phoneme identification, and the lack thereof, both in reaction time and 
in response choice measures; “phonotactic rule” effects on phoneme 
identification and the role of specific lexical items in influencing these 
effects; the integration of multiple cues to phoneme identity and the cat- 
egorical nature of the percept that results from this integration. TRACE 
integrates all of these phenomena into a single account that incorporates 
aspects of the accounts offered for particular aspects of these results by 
other models. In the next section, we show how TRACE can also en- 
compass a number of phenomena concerning the recognition of spoken 
words. 

THE TIME COURSE OF WORD RECOGNITION 
The study of spoken word recognition has a long history, and many 

models have been proposed. Morton’s now-classic logogen model 
(Morton, 1969) was the first to provide an explicit account of the inte- 
gration of contextual and sensory information in word recognition. Other 
models of this period (e.g., Broadbent, 1967) concentrated primarily on 
effects of word frequency. Until the mid 1970s however, there was little 
explicit consideration of the time course of spoken word recognition. 
Several studies by Marslen-Wilson and his collaborators (Marslen- 
Wilson, 1973; Marslen-Wilson & Tyler, 1975) and by Cole and his collab- 
orators (Cole, 1973; Cole & Jakimik, 1978, 1980) pioneered the investi- 
gation of this problem. 

Marslen-Wilson’s COHORT model (Marslen-Wilson & Tyler, 1980; 
Marslen-Wilson & Welsh, 1978) of speech perception was based on this 
early work on the time course of spoken word recognition. The COHORT 
model was one of the sources of inspiration for TRACE, for two main 
reasons. First, it provided an explicit account of the way top-down and 
bottom-up information could be combined to produce a word recognition 
mechanism that actually worked in real time. Second, it accounted for 
the findings of a number of important experiments demonstrating the “on- 
line” character of the speech recognition process. However, several de- 
ficiencies of the COHORT model have been pointed out, as we shall see. 

Because TRACE was motivated in large part by a desire to keep what 
is good about COHORT and improve upon its weaknesses, we begin this 
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section by considering the COHORT model in some detail. First we re- 
view the basic assumptions of the model, then consider its strengths and 
weaknesses. There appear to be four basic assumptions of the COHORT 
model. 

1. The model uses the first sound (in Marslen-Wilson & Tyler, 1980, 
the initial consonant cluster-plus-vowel) of the word to determine which 
words will be in an initial cohort or candidate set. 

2. Once the candidate set is established, the model eliminates words 
from the cohort immediately, as each successive phoneme arrives, if the 
new phoneme fails to match the next phoneme in the word. Words can 
also be eliminated on the basis of semantic constraints, although the initial 
cohort is assumed to be determined by acoustic input alone. 

3. Word recognition occurs immediately, as soon as the cohort has 
been reduced to a single member; in an auditory lexical decision task, 
the decision that an item is a nonword can be made as soon as there are 
no remaining members in the cohort. 

4. Word recognition can influence the identification of phonemes in a 
word only after the word has been recognized. 

There is a considerable body of data that supports various predictions 
of the COHORT model. It has been observed in a variety of paradigms 
that lexical influences on phoneme identification responses are much 
greater later in words than at their beginnings (Bagley, 1900; Cole and 
Jakimik, 1978, 1980; Marslen-Wilson, 1980; Marslen-Wilson and Welsh, 
1978). We considered some of this evidence in earlier sections. Another 
important finding supporting COHORT is the fact that the reaction time 
to decide that an item is a nonword is constant, when measured from the 
occurrence of the first phoneme that rules out the last remaining word in 
the cohort (Marslen-Wilson, 1980). 

Perhaps the most direct support for the basic word recognition as- 
sumptions of COHORT comes from the gating paradigm, introduced first 
by Grosjean (1980). In this paradigm, subjects are required to guess the 
identity of a word after hearing successive presentations of the word. The 
first presentation is cut off so that the subject hears only the first N ms 
(N = 30 to 50 in different studies). Later presentations are successively 
lengthened in N-ms increments until eventually the whole word is pre- 
sented. The duration at which half the subjects correctly identify the word 
is called the “isolation point.” Considerably more input is required before 
subjects are reasonably sure of the identity of the word; that point is 
termed the “acceptance point.” Grosjean’s initial study confirmed many 
basic predictions of COHORT, though it also raised a few difficulties for 
it (see below). In a more recent study using the same method, Tyler and 
Wessels (1983) carried out a very close analysis of the relation between 
the empirically determined isolation point and the point at which the input 



54 MC CLELLAND AND ELMAN 

the subject has received is consistent with one and only one remaining 
item, the point at which recognition would be exepected to occur in the 
COHORT model. They report that the isolation point falls very close to 
this theoretically derived recognition point, strongly supporting the basic 
immediacy assumptions of the COHORT model. 

It should be noted that the gating task is not a timed task, and so it 
does not provide a direct measure of what the subject knows as the 
speech input is unfolding. However, it is now in fairly wide use, and 
Cotton and Grosjean (1984) have established that the basic patterns of 
results obtained in Grosjean’s (1980) pioneering gating experiment do not 
depend on the presentation of successively longer and longer presenta- 
tions of the same stimulus. 

A dilemma for COHORT. Though the COHORT model accounts for a 
large body of data, there are several difficulties with it. We consider first 
the one that seems the most serious: as stated, COHORT requires ac- 
curate, undistorted information about the identity of the phonemes in a 
word up to the isolation point. Words cannot enter into consideration 
unless the initial consonant cluster plus vowel is heard, and they are 
discarded from it as soon as a phoneme comes along that they fail to 
match. No explicit procedure is described for recovering words into the 
cohort once they have been excluded from it, or when the beginning of 
the word is not accurately perceived due to noise or elision. 

These aspects of COHORT make it very difficult for the model to 
explain recognition of words with distorted beginnings, such as 
“dwibble” (Norris, 1982), or words whose beginnings have been replaced 
by noise (Salasso & Pisoni, 1985). From a computational point of view, 
this makes the model an extremely brittle one; in particular it fails to deal 
with the problem of noise and underspecification which is so crucial for 
recognition of real speech (Thompson, 1984). 

The recognizability of distorted items like “dwibble” might be taken 
as suggesting that what we need to do is liberalize the criterion for en- 
tering and retaining words in the cohort. Thus, the cohort could be de- 
fined as the set of words consistent with what has been heard or mild 
(e.g., one or two features) deviations from what has been heard. This 
would allow mild distortions like replacing /r/ with /w/ not to disqualify 
a word from the cohort. It would also allow the model to cope with cases 
where the beginning of the word is underspecified; in these cases, the 
initial cohort would simply be larger than in the case where the input 
clearly specified the initial phonemes. 

However, there is still a problem. Sometimes we need to be able to 
rule out items which mismatch the input on one or two dimensions and 
sometimes we do not. Consider the items “pleasant” and “blacelet.” In 
the first case, we need to exclude “present” from the cohort, so the 
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slight difference between /I/ and /r/ must be sufficient to rule it out; in the 
second case, we do not want to lose the word “bracelet,” since it pro- 
vides the best fit overall to the input. Thus, in this case, the difference 
between /l/ and /r/ must not be allowed to rule a word candidate out. 

Thus the dilemma: on the one hand, we want a mechanism that will be 
able to select the correct word as soon as an undistorted input specifies 
it uniquely, to account for the Tyler and Wessels results. On the other 
hand, we do not want the model to completely eliminate possibilities 
which might later turn out to be correct. We shall shortly see that TRACE 
provides a way out of this dilemma. 

Another problem for COHORT. Grosjean (1985) has recently pointed 
out another problem for COHORT, namely, the possibility that the sub- 
ject may be uncertain about the location of the beginning of each suc- 
cessive word. A tacit assumption of the model is that the subject goes 
into the beginning of each word knowing that it is the beginning. In the 
related model of Cole and Jakimik (1980) this assumption is made explicit. 
Unfortunately, it is not always possible to know in advance where one 
word starts and the next word ends. As we discussed in the introduction, 
acoustic cues to juncture are not always reliable, and in the absence of 
acoustic cues, even an optimally efficient mechanism cannot always 
know that it has heard the end of one word until it hears enough of the 
next to rule out the possible continuations of the first word. 

What is needed, then. is a model that can account for COHORT’s 
successes, and overcome these two important deficiencies. The next two 
sections show that TRACE does quite well on both counts. The first of 
these sections examines TRACE’s behavior in processing words whose 
beginnings and endings are clearly deliniated for it by the presence of 
silence. The second considers the processing of multiword inputs, which 
the model must parse for itself. 

One Word at a Time 
In this section we see how TRACE resolves the dilemma facing CO- 

HORT, in that it is immediately sensitive to new information but is still 
able to cope with underspecified or distorted word beginnings. We also 
consider how the model accounts for the preference for short-word re- 
sponses early in processing a long word. The section concludes with a 
discussion of ways the model could be extended to account for word 
frequency and contextual influences. 

Competition vs bottom-up inhibition. TRACE deals with COHORT’s 
dilemma by using competition, rather than phoneme-to-word inhibition. 
The essence of the idea is simply this. Phoneme units have excitatory 
connections to all the word units they are consistent with. Thus, when- 
ever a phoneme becomes active in a particular slice of the Trace, it sends 
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excitation to all the word units consistent with that phoneme in that slice. 
The word units then compete with each other; items that contain each 
successive phoneme dominate all others, but if no word matches per- 
fectly, a word that provides a close fit to the phoneme sequence can 
eventaully win out over words that provide less adequate matches. The 
exact metric of “closeness of fit” depends, of course, on a large number 
of details. In the absence of such a metric, a simple count of the number 
of acoustic features differing between a lexical item and a presented stim- 
ulus can provide a useful first approximation, but other factors such as 
stress, location of differences within the word, and discriminability of the 
differing features will of course come into play. 

Consider, from this point of view, our two items “pleasant” and “blace- 
let” again. In the first instance, “pleasant” will receive more bottom-up 
excitation than “present,” and so will win out in the competition. We 
have already seen, in our analysis of categorical perception at the pho- 
neme level, how even slight differences in initial bottom-up excitation can 
be magnified by the joint effects of competition and feedback. But the 
real beauty of the competition mechanism is that this action is contingent 
on the activation of other word candidates. Thus, in the case of “blace- 
let”, since there is no word “blacelet,” “bracelet” will not be sup- 
pressed. Initially, it is true, words like “blame” and “blatant” will tend 
to dominate “bracelet,” but since the input matches “bracelet” better 
than any other word, “bracelet” will eventually come to dominate the 
other possibilities. 

This behavior of the model is illustrated using examples from its re- 
stricted lexicon in Fig. 24. In one case, the input is “legal,“‘and the word 
“regal” is completely dominated by “legal.” In the other case, the input 
is “lugged,” and the word “rugged” eventually dominates, because there 
is no word “lugged” (pronounced to rhyme with “rugged’‘-the word 
“lug” is not in the model’s lexicon). Here “rugged” must compete with 
other partial matches of “lugged,” of course, and it is less effective in 
this regard than it would be if the input exactly matched it, but it does 
win out in the end. 

It should be noted that the details of what word will be most strongly 
activated in such cases depend on a number of factors, including, in 
particuiar, the distinctiveness of mismatching phonemes. Also, it is pos- 
sible to find cases in which a word that correctly spans a part of a longer 
string dominates a longer word that spans the whole string but misses 
out on a phoneme in one place or another. An item like “vigorette” may 
or may not be a case in point. In such cases, though, the most important 
thing might not turn out to be winning and losing, but rather the fact that 
both tend to stay in the game. Such neologisms can suggest a poetic 
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FIG. 24. State of the Trace at two points during processing of “legal” and “lugged.” 

conjunction of meanings, if used just right: “He walked briskly down the 
street, puffing his vigorette.” 

Time course of word recognition in TRACE. So far we have shown 
how TRACE overcomes a dificulty with the COHORT model in cases 
where the beginning of a word has been distorted. In earlier sections on 
phoneme processing, some of the simulations illustrate that the model is 
capable of recognizing words with underspecified (i.e., ambiguous) initial 
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phonemes. In this section, we examine how well TRACE emulates the 
COHORT model, in cases where the input is an undistorted representa- 
tion of some particular word. In particular, we wanted to see how close 
TRACE would come to behaving in accord with COHORT’s assumption 
that incorrect words are dropped from the cohort of active candidates as 
soon as the input diverges from them. 

To examine this process, we considered the processing of the 
word “product” (/prad^ct/). Figure 25 shows the state of the Trace at 
various points in processing this word, and Fig. 26 shows the response 
strengths of several units relative to the strength of the word “product” 
itself, as a function of time relative to the arrival of the successive pho- 
nemes in the input. In this figure, the response strength of “product” is 
simply set to 1.0 at each time slice and the response strengths of units 
for other words are plotted in terms of the ratio of their strength, divided 
by the strength of “product.” The curves shown are for the words “trot,” 
“possible,” priest,” “progress,” and “produce”; these words differ 
from the word “product” (according to the simulation program’s stress- 
less encoding of them!) in the lst, 2nd, 3d, 4th, and 5th phonemes, re- 
spectively. Figure 26 shows that these items begin to drop out of “con- 
tention” just after each successive phoneme comes in. Of course, there 
is nothing hard and fast or absolute about dropping a candidate in 
TRACE. What we see instead is that mismatching candidates simply 
begin to fade as the input diverges from them in favor of some other 
candidate. This is just the kind of behavior the COHORT model would 

Cprad-kt/ 

Et iqpg&$ Et 

8 

@raclus) jr 

. 
iLcim!a 

-P -P -P 
l-a radAk 

P r d 
a t 

r k 
d 

_ F1 
I 

ub b g 

-b 8 
t g 

lU fib 
b tr 

-prad-kt- -prad-kt- -prad-kt- -prad-kt- 

FIG. 25. State of the Trace at various points in processing the word “product” (iprad^kt/). 
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FIG. 26. Response strengths of the units for several words relative to the response strength 

of the unit for “product” (lprad^kti), as a function of time relative to the peak of the first 
phoneme that fails to match the word. The successive curves coming off of the horizontal 
line representing the normalized response strength of “product” are for the words “trot,” 
“possible,” “priest,” “progress,” and “produce,” respectively. In our lexicon they are 
rendered as itrat/, lpas^b’l/, lpristi, /pragr^sl, and lpradusl, respectively. 

produce in this case, though of course the drop-off would be assumed to 
be an abrupt, discrete event.3 

There is one aspect of TRACE’s behavior which differs from that of 
COHORT: among those words that are consistent with the input up to a 
particular point in time, TRACE shows a bias in favor of shorter words 
over longer words. Thus, “priest” has a slight advantage before the /a/ 
comes in, and “produce” is well ahead of “product” until the /^/comes 
in (in phonemes, “produce ” is one shorter than “product”). 

This advantage for shorter words is due to the competition mechanism. 
Recall that word units compete with each other in proportion to the 
overlap of the sets of time slices spanned by each of the words. Overlap 
is, of course, symmetrical, so long and short words inhibit each other to 
an equal extent. But longer words suffer more inhibition from other long 
words than short words do. For example, “progress” and “probable” 
inhibit “product” more than they inhibit “priest” and “produce.” Thus, 
units for longer words are generally subjected to extra inhibition, partic- 
ularly early on when many candidates are active, and so they tend to 
suffer in comparison to short words as a result. 

3 The data reported by Tyler and Wessels actually appears to indicate an even more 
immediate drop-off than is seen in this simulation. However, it should be remembered that 
the curves shown in Fig. 26 are on-line response strength curves, and thus reflect the lags 
inherent in the percolation of input from the feature to the word level. The gating task, on 
the other hand, does not require subjects to respond on-line. If the input is simply turned 
off at the peak of each phoneme’s input specification, and then allowed to run free for a 
few cycles, the dropout point shifts even earlier. 
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We were at first somewhat disturbed by this aspect of the model’s 
behavior, but it turns out to correspond quite closely with results obtained 
in experiments by Grosjean (1980) and Cotton and Grosjean (1984) using 
the gating paradigm. Both papers found that subjects hearing the begin- 
nings of words like “captain” tended to report shorter words consistent 
with what they had heard (e.g., “cap”). However, we should observe 
that in the gating paradigm, when the word “captain” is truncated just 
after the /p/, it will sound quite a bit like “cap” followed by silence. In 
TRACE, this silence would activate silence units at the phoneme and 
word levels, and the word-level silence units would compete with units 
for words that extend into the silence. It will reinforce the preference of 
the model for short-word interpretations, because the detection of the 
silence will inhibit the detector for the longer word. Thus, there are ac- 
tually two reasons why TRACE might favor short-word interpretations 
over long-word interpretations in a gating experiment. Whether human 
subjects show a residual preference for shorter interpretations over longer 
ones in the absence of a following silence during the course of processing 
is not yet clear from available data. 

We should point out that the experimental literature indicates that the 
advantage of shorter words over longer ones holds only under the special 
circumstances of gated presentation and then only with early gates, when 
shorter words are relatively more complete than longer ones would be. 
It has been well known for a long time that longer words are generally 
more readily recognized than shorter ones when the whole word is pre- 
sented for identification against a background of noise (Licklider & 
Miller, 1951). Presumably, the reason for this is simply that longer words 
generally provide a larger number of cues than shorter words do and 
hence are simply less confusable. 

Frequency and context effects. There are, of course, other factors 
which influence when word recognition will occur beyond those we have 
considered thus far. Two very important ones are word frequency and 
contextual predictability, The literature on these two factors goes back 
to the turn of the century (Bagley, 1900). Morton’s (1969) logogen model 
effectively deals with several important aspects of this huge literature, 
though not with the time course of these effects. 

We have not yet included either word frequency or higher level con- 
textual influences in TRACE, though of course we believe they are im- 
portant. Word frequency effects could be accommodated, as they were 
in the interactive-activation model of word recognition, in terms of vari- 
ation in the resting activation level of word units, or in terms of variation 
in the strength of phoneme-to-word connections. Contextual influences 
can be thought of as supplying activation to word units from even higher 
levels of processing than the word level. In this way, basic aspects of 
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these two kinds of influences can be captured. We leave it to future 
research, however, to determine to what extent these elaborations of 
TRACE would provide a detailed account of the data on the roles of 
these factors. For now, we turn to the problem of determining where one 
word ends and the next one begins. 

Lexical Basis of Word Segmentation 
How do we know when one word ends and the next word begins? This 

is by no means an easy task, as we noted in the introduction. To recap 
our earlier argument, there are some cues in the speech stream, but as 
several investigators have pointed out (Cole & Jakimik, 1980; Grosjean 
& Gee, 1984; Thompson, 1984), they are not always sufficient, particu- 
larly in fluent speech. It would thus appear that there is an important role 
for lexical knowledge to play in determining where one word ends and 
the next word begins, as well as in identifying the objects that result from 
the process of segmentation. Indeed, as Reddy (1976) has suggested, 
segmentation and identification may be joint results of the mechanisms 
of word recognition. 

Cole and Jakimik (1980) discuss these points and present evidence that 
semantic and syntactic context can guide segmentation in cases where 
the lexicon is consistent with two readings (“car go” vs “cargo”). Our 
present model lacks syntactic and semantic levels, so it cannot make use 
of these higher level constraints; but it can make use of its knowledge 
about words, not only to identify individual words in isolation, but to 
pick out a sequence of words in continuous streams of phonemes. Word 
identification and segmentation emerge together from the interactive-ac- 
tivation process, as part and parcel of the process of word activation. 

This section considers several aspects of the way in which word seg- 
mentation emerges from the interactive-activation process, as observed 
in simulations with TRACE II. Before we consider these, it is worth 
recalling the details of some of the assumptions made about the bottom- 
up activation of word units and about competitive inhibition between word 
units. First, the extent to which a particular phoneme excites a particular 
word unit is independent of the length of the word. Second, the extent 
to which a particular word unit inhibits another word unit is proportional 
to the temporal overlap of the two word units. This means that words 
which do not overlap in time will not inhibit each other, but will gang up 
on other words that partially overlap each of them. These two assump- 
tions form most of the basis of the effects we observe in the simulations. 

The boundary is in the ear of the “behearer. ” First, we consider the 
basic fact that the number of words we hear in a sequence of phonemes 
can depend on our knowledge of the number of words the sequence 
makes. Consider the two utterances, “she can’t” and “secant”. Though 
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we can say either item in a way that makes it sound like a single word 
or like two words, there is an intermediate way of saying them so that 
the first seems to be two words and the second seems like only one. 

To see what TRACE II would do with single- and multiple-word inputs, 
we ran simulation experiments with each individual word in the main 21 I- 
word lexicon preceded and followed by silence, and then with 211 pairs 
of words, with a silence at the beginning and at the end of the entire 
stream. The pairs were made by simply permuting the lexicon twice and 
then abutting the two permutations so that each word occurred once as 
the first word and once as the second word in the entire set of 211 pairs. 
We stress, of course, that real speech would tend to contain cues that 
would mark word boundaries in many cases; the experiment is simply 
designed to show what TRACE would do in cases where these cues are 
lacking. 

With the individual words, TRACE made no mistakes-that is, by a 
few slices after the end of the word, the word that spanned the entire 
input was more strongly activated than any other word. An example of 
this is shown using the item /parti/ in Fig. 27. The stream /parti/ might be 
either one word (“party”) or two (“par tea” or “par tee”-the model 
knows of only one word pronounced /ti/). At early points in processing 
the word, “par” dominates over “party” and other longer words, for 
reasons discussed in the previous section. By the time the model has had 
a chance to process the end of the word, however, “party” comes to 
dominate. 

Why does a single longer word eventually win out over two shorter 
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FIG. 27. The state of the Trace at various points during processing of Ipartil. 
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ones in TRACE? There are two main reasons. First of all, a longer word 
eventually receives more bottom-up support than either shorter word, 
simply because there are more phonemes activating the longer word than 
the shorter word. The second reason has to do with the sequential nature 
of the input. In the case of /parti/, by the time the /ti/ is coming in, the 
word “party” is well enough established that it keeps /ti/ from getting as 
strongly activated as it would otherwise, as illustrated in Fig. 27. This 
behavior of the model leads to the prediction that short words embedded 
in the ends of longer words should not get as strongly activated as shorter 
words coming earlier in the longer word. This prediction could be tested 
using the gating paradigm, or a cross-modal priming paradigm such as 
the one used by Swinney (1982). 

However, it should be noted that this aspect of the behavior of the 
model can be overridden if there is bottom-up information favoring the 
two-word interpretation. Currently, this can only happen in TRACE 
through the insertion of a brief silence between the “par” and the “tea.” 
As shown in Fig. 28, this results in “par” and “tea” dominating all other 
word candidates. 

What happens when there is no long word that spans the entire stream, 
as in lbartii? In this case, the model settles on the two-word interpretation 
“bar tea,” as shown in Fig. 28. Note that other words, such as “art,” 
that span a portion of the input, are less successful than either “bar” or 
“tea.” The reason is that the interpretations “bar” and “art” overlap 
with each other, and “art” and “tea” overlap with each other, but “bar” 

-part1- +3 -par-t i-+3 -bartl- +3 -park]- +3 

FIG. 28. State of the Trace after processing the streams lpartii, /par-tii, ibartii. and lparkii. 
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and “tea” do not overlap. Thus, “art” receives inhibition from both 
“bar” and “tea,” while “bar” and “tea” each receive inhibition only 
from “art.” Thus two words that do not overlap with each other can 
gang up on a third each overlaps with partly and drive it out. 

These remarkably simple mechanisms of activation and competition do 
a very good job of word segmentation, without the aid of any syllabifi- 
cation, stress, phonetic word boundary cues, or semantic and syntactic 
constraints. In 189 of the 211 word pairs tested in the simulation exper- 
iment, the model came up with the correct parse, in the sense that no 
other word was more active than either of the two words that had been 
presented. Some of the failures of the model occurred in cases where the 
input was actually consistent with two parses, either a longer spanning 
word rather than a single word (as in “party”) or a different parse into 
two words, as in “part rust” for “par trust.” In such cases TRACE tends 
to prefer parses in which the longer word comes first. There were, how- 
ever, some cases in which the model did not come up with a valid parse, 
that is, a pattern that represents complete coverage of the input by a set 
of nonoverlapping words. For example, consider the input iparkil. 
Though this makes the two words “par” and “key,” the word “park” 
has a stronger activation than either “par” or “key,” as illustrated in 
Fig. 28. 

This aspect of TRACE II’s behavior indicates that the present version 
of the model is far from the final word on word segmentation. A complete 
model would also exploit syllabification, stress, and other cues to word 
identity to help eliminate some of the possible interpretations of TRACE 
II’s simple phoneme streams. The activation and competition mecha- 
nisms in TRACE II are sufficient to do quite a bit of the word segmen- 
tation work, but we do not expect them to do this perfectly in all cases 
without the aid of other cues. 

Some readers may be troubled by a mechanism that does not insist 
upon a parse in which each phoneme is covered by one and only one 
word. Actually, though, this characteristic of the model is often a virtue, 
since in many cases the last phoneme of a word must do double duty as 
the first phoneme of the next, as in “hound dog” or “brush shop.” While 
speakers tend to signal the doubling in careful speech, the cues to single 
vs double consonants are not always sufficient for disambiguation, as is 
clear when strings with multiple interpretations are used as stimuli. For 
example, an utterance intended as “no notion” will sometimes be heard 
as “known notion” (Nakatani & Dukes, 1977). The model is not inclined 
to suppress activations of partially overlapping words, even when a non- 
overlapping parse is available. This behavior of TRACE is illustrated with 
/b^stap/ (“bus top” or “bus stop”) in Fig. 29. In this case, higher levels 
could provide an additional source of information that would help the 
model choose between overlapping and nonoverlapping interpretations. 
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-b-s tap- -br-Sap- 
FIG. 29. State of the Trace at the end of the streams lbustapi (“bus stop” or “bus top”) 

and /bruSap/ (“brush shop”). 

The simulations we have reported show that the word activation/com- 
petition mechanism can go a long way toward providing a complete in- 
terpretation of the input stream as a sequence of words. As a word is 
beginning to come in, the model tends to prefer shorter words consistent 
with the input stream over longer ones. As the input unfolds through 
time, however, the model tends to prefer to interpret streams of pho- 
nemes as single longer words rather than as a sequence of short words; 
and it tends to find parses that account for each phoneme once. But it 
does not insist upon this, and will occasionally produce an interpretation 
that leaves part of the stream of phonemes unaccounted for or which 
accounts for part of the stream of phonemes twice. Often enough, it will 
also leave an alternative to its “preferred parse” in a strong position, so 
that both the preferred parse and the alternative would be available to 
higher levels and subject to possible reinforcement by them. 

Thus far in this section, we have considered the general properties of 
the way in which TRACE uses lexical information to segment a speech 
stream into words, but we have not considered much in the way of em- 
pirical data that these aspects of the model shed light on. However, there 
are two findings in the literature which can be interpreted in accordance 
with TRACE’s handling of multiword speech streams. 

Where does a nonword end? A number of investigators (e.g., Cole & 
Jakimik, 1980) have suggested that when one word is identified, its iden- 
tity can be used to determine where it ends and therefore where the next 
word begins. In TRACE, the interactive activation process can often 
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establish where a word will end even before it actually does end, partic- 
ularly in the case of longer words or when activations at the word level 
are aided by syntactic and semantic constraints. However, it is much 
harder to establish the end of a nonword, since the fact that it is a non- 
word means that we cannot exploit any knowledge of where it should 
end to do so. 

This fact may account for the finding of Foss and Blank (1980) that 
subjects are much slower to respond to target phonemes at the beginning 
of a word preceded by a nonword than at the beginning of a word 
preceded by a word. For example, responses to detect word initial /d/ 
were faster in stimuli like the following: 

At the end of last year, the government decided . . . 

than they were when the word preceding the target (in this case govern- 
ment) was replaced by a nonword such as “gatabont.” It should be noted 
that the targets were specified as word-initial segments. Therefore, the 
subjects had not only to identify the target phoneme, they had to deter- 
mine that it fell at the beginning of a word, as well, The fact that reaction 
times were faster when the target was preceded by a word suggests that 
subjects were able to use their knowledge of where the word “govern- 
ment” ends to help them determine where the next word begins. 

An example of how TRACE allows one word to help establish where 
its successor begins is illustrated in Fig. 30. In the example, the model 
receives the stream “possible target” or “pagusle target,” and we 
imagine that the target is word-initial /t/. In the first case, the word “pos- 
sible” is clearly established and competitors underneath it have been 
completely crushed by the ~time the initial /t/ in “target” becomes active 
at the phoneme level (second panel in the upper part of the figure), so 
there is no ambiguity about the fact that this /t/ is at the beginning of the 
next word. (The decision mechanism would, of course, be required to 
note that the model had established the location of the end of the 
preceding word. We have not yet incorporated explicit assumptions about 
how this would be done.) In the second case, words beginning and ending 
at a number of different places, including some that overlap with the 
location of the /t/, are partly activated. Thus, the subject would have to 
wait until he is well into the word “target” before it becomes clear that 
the first /t/ in target is in fact a word-initial /t/. 

In reality, the situation is probably not as bleak for the perceiver as it 
appears in this example, because in many cases there will be cues in the 
manner of pronunciation and the syllabification of the input that will help 
to indicate the location of the word boundary. However, given the im- 
precision and frequent absence of such cues, it is not surprising that the 
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FIG. 30. State of the Trace at several points during the processing of “possible target” and 
“pagusle target.” 

lexical status of one part of a speech stream plays an important role in 
determining where the beginning of the next word must be. 

The long and short of word identification. One problematic feature of 
speech is the fact that it is not always possible to identify a word un- 
ambiguously until one has heard the word after it. Consider, for example, 
the word “tar.” If we are listening to an utterance and have gotten just 
to the /r/ in “The man saw the tar box,” though “tar” will tend to be 
the preferred hypothesis at this point, we do not have enough information 
to say unequivocally that the word “tar” will not turn out to be “target” 
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or “tarnished” or one of several other possibilities. It is only after more 
time has passed, and we have perceived either a silence or enough of the 
next word to rule out any of the continuations of /tar/, that we can decide 
we have heard the word “tar.” This situation, as it arises in TRACE 
with the simple utterance /tarbaks/ (“tar box”) is illustrated in Fig. 31. 
Though “tar” is somewhat more active than the longer word “target” 
when the /r-l is coming in, it is only when the word “box” emerges as 
the interpretation of the phonemes following “tar” that the rival “target” 
finally fades as a serious contender. 

With longer words the situation is different. As we have already seen 
in another example, by the time the end of a longer word is reached it is 
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FIG. 31. State of the Trace at several points in processing “tar box” and “guitar box.” 
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much more likely that only one word candidate will remain. Indeed, with 
longer words it is often possible to have enough information to identify 
the word unambiguously well before the end of the word. An illustration 
of this situation is provided by a simulation using the utterance “guitar 
box” /g^tarbaks/. By the time the /r/ has registered, “guitar” is clearly 
dominant at the word level, and can be unambiguously identified without 
further ado. 

Recently, an experiment by Grosjean (1985) has demonstrated these 
same effects empirically. Grosjean presented subjects with long or short 
words followed by a second word and measured how much of the word 
and its successor the subject needed to hear to identify the target. With 
longer words, subjects could usually guess the word correctly well before 
the end of the word, and by the end of the word they were quite sure of 
the word’s identity. With monosyllabic words, on the other hand, many 
of the words could not be identified correctly until well into the next 
word. On the average, subjects were not sure of the word’s identity until 
about the end of the next word, or the beginning of the one after. As 
Grosjean (1985) points out, a major reason for this is simply that the 
spoken input often does not uniquely specify the identity of a short word. 
In such cases, the perceptual system is often forced to process the short 
word, and its successor, at the same time. 

Recognizing the MJOY~S in a short sentence. One last example of 
TRACE II’s performance in segmenting words is illustrated in Fig. 32. 
The figure shows the state of the Trace at several points during the pro- 
cessing of the stream /SiS^t^baksl. By the end, the words of the phrase 
“She shut a box,” which fits the input perfectly with no overlap, domi- 
nate all others. 

This example illustrates how far it is sometimes possible to go in 
parsing a stream of phonemes into words, without even considering syn- 
tactic and semantic constraints, or stress, syllabification, and juncture 
cues to word identification. The example also illustrates the difficulty the 
model has in perceiving short, unstressed words like “a”. This is, of 
course, just an extreme version of the difficulty the model has in pro- 
cessing monosyllabic words like “tar,” and is consistent with Grosjean’s 
data on the difficulty subjects have with identifying short words. In fact, 
Grosjean and Gee (1984) report pilot data indicating that these difficulties 
are even more severe with function words like “a” and “of.” It should 
be noted that TRACE makes no special distinction between content and 
function words, per se, and neither do Grosjean and Gee. However, func- 
tion words are usually unstressed and considerably shorter than content 
words. Thus, it is not necessary to point to any special mechanisms for 
closed versus open class morphemes to account for Grosjean and Gee’s 
results. 
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FIG. 32. The state of the Trace at several points during the processing of the stream 
lSis*t^baksl (“She shut a box”). 

Summary of Word Identification Simulations 
While phoneme identification has been studied for many years, data 

from on-line studies of word recognition is just beginning to accumulate. 
There is an older literature on accuracy of word identification in noise, 
but it has only been quite recently that useful techniques have been de- 
veloped for studying word recognition in real time. 

What evidence there is, though indicates the complexity of the word 
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identification process. While the word identification mechanism is sen- 
sitive to each new incoming phoneme as it arrives, it is nevertheless 
robust enough to recover from underspecification or distortion of word 
beginnings. And it appears to be capable of some simultaneous processing 
of successive words in the input stream. TRACE appears to capture these 
aspects of the time course of word recognition. In these respects, it im- 
proves upon the COHORT model, the only previously extant model that 
provides an explicit account of the on-line process of word recognition. 
And the mechanisms it uses to accomplish this are the same ones that it 
used for the simulations of the process of phoneme identification de- 
scribed in the preceding section. 

GENERAL DISCUSSION 
Summary of TRACE’s Successes 

In this article, we have seen that TRACE can account for a number of 
different aspects of human speech perception. We begin by listing the 
major correspondences between TRACE and what we know about the 
human speech understanding process. 

1. TRACE, like humans, uses information from overlapping portions 
of the speech wave to identify successive phonemes. 

2. The model shows a tendency toward categorical perception of pho- 
nemes, as do human subjects. The model’s tendency toward categorical 
perception is affected by many of the same parameters which affect the 
degree of categorical perception shown by human subjects; in particular, 
the extent to which perception will be categorical increases with time 
between stimuli that must be compared. 

3. The model combines feature information from a number of different 
dimensions, and exhibits cue trade-offs in phoneme identification. These 
characteristics of human speech perception have been demonstrated in a 
very large number of studies. 

4. The model augments information from the speech stream with feed- 
back from the lexical level in reaching decisions about the identity of 
phonemes. These lexical influences on phoneme identification occur in 
conditions similar to those in which lexical effects have been reported, 
but do not occur in conditions in which these effects have not been ob- 
tained. 

5. Like human subjects, the model exhibits apparent phonotactic rule 
effects on phoneme identification, though it has no explicit representation 
of the phonotactic rules. The tendency to prefer phonotactically regular 
interpretations of ambiguous phonemes can be overridden by particular 
lexical items, just as it can in the human perceiver. 

6. In processing unambiguous phoneme sequences preceded by si- 
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lence, the model exhibits immediate sensitivity to information favoring 
one word interpretation over another. It shows an initial preference for 
shorter words relative to longer words, but eventually a sequence of 
phonemes that matches a long word perfectly will be identified as that 
word, overturning the initial preference for the short-word interpretation. 
These aspects of the model are consistent with human data from gating 
experiments. 

7. Though the model is heavily influenced by word beginnings, it can 
recover from underspecification or distortion of a word’s beginning. 

8. The model can use its knowledge of the lexicon to parse sequences 
of phonemes into words, and to establish where one word ends and the 
next one begins when cues to word boundaries are lacking. 

9. Like human subjects, the model sometimes cannot identify a word 
until it has heard part of the next word. Also like human subjects, it can 
better determine where a word will begin when it is preceded by a word 
rather than a nonword. 

10. The model does not demand a parse of a phoneme sequence that 
includes each phoneme in one and only one word. This allows it to cope 
gracefully with elision of phonemes at word boundaries. It will often 
permit several alternative parses to remain available for higher level in- 
fluences to choose among. 

In addition to these characteristics observed in the present paper, our 
simulations with TRACE I show several further correspondences be- 
tween the model and human speech perception. Most important of these 
is the fact that the model is able to use activations of phoneme units in 
one part of the Trace to adjust the connection strengths determining which 
features will activate which phonemes in adjacent parts of the Trace. In 
this way the model can adjust as human subjects do to coarticulatory 
influences on the acoustic properties of phonemes (Fowler, 1984; Mann 
& Repp, 1980). 

There is, of course, more data on some of these points than others. It 
will be very interesting to see how well TRACE will hold up against the 
data as further empirical studies are carried out. 

Some of the Reasons for the Successes of TRACE 
To what does the TRACE model owe its success in simulating human 

speech perception? Some of TRACE’s successes simply depend on its 
ability to make use of the information as it comes it. For example, it fails 
to show context effects only when a response must be made, or can be 
made with high accuracy, before contextual information is available. 

There are several other reasons for TRACE’s success. One, we think, 
is the use of continuous activation and competition processes in place of 
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discrete decisive processes such as segmentation and labeling. Activation 
and competition are matters of degree and protect TRACE from cata- 
strophic commitment in marginal cases, and they provide a natural means 
for combining many different sources of information. Of course, this fea- 
ture of the model is shared with several other models (e.g., Morton, 1969; 
Oden & Massaro, 1978). though only Nusbaum and Slowiaczek (1982) 
have previously incorporated these kinds of assumptions in a model of 
the time course of word recognition. 

Part of the success of TRACE is specifically due to the use of com- 
petitive inhibitory interactions instead of bottom-up (or top-down) inhi- 
bition. Competition allows the model to select the best interpretation 
available, settling for an imperfect one when no better one is available, 
but overriding poor ones when a good one is at hand. These and other 
virtues of competitive inhibition have been noted before (e.g., Feldman 
& Ballard, 1982; Grossberg, 1973; Levitt, 1976; Ratliff, 1965; von Bekesy, 
1967) in other contexts. Their usefulness here attests to the general utility 
of the competitive inhibition mechanism. 

The elimination of between-level inhibition from the interactive acti- 
vation mechanism puts us in a very nice position with respect to one 
general critique of interactive-activation models. It is often said that ac- 
tivation models are too unconstrained and too flexible to be anything 
more than a language for conveniently describing information processing. 
We are now in a position to suggest that a restricted version of the frame- 
work is not only sufficient but superior. Interactive-activation models 
could exploit both excitatory and inhibitory connections both between 
and within levels, but in the original interactive-activation model of letter 
perception, only inhibitory interactions were allowed within a level. In 
more recent versions of the visual model (McClelland, 1985, 1986), 
and in TRACE, we have gone even further, allowing only excitatory 
connections between levels and only inhibitory connections within levels. 
From our experience, it appears that models which adhere to these con- 
straints work as well as or better than members of the more general class 
that do not. We hasten to add that we have no proof that this is true. We 
have, however, no reason to feel that we could improve the performance 
of our model by allowing either between-level inhibitory interactions or 
within-level excitation. 

Other aspects of the successes of TRACE depend on its use of feedback 
from higher to lower levels. Feedback plays a central role in the accounts 
of categorical perception, lexical effects on phoneme identification, and 
“phonotactic rule” effects. 

We do not claim that any of these phenomena, taken individually, re- 
quire the assumption of a feedback mechanism. For example, consider 
the phenomenon of categorical perception. We use feedback from the 
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phoneme to the feature level to drive feature patterns closer to the pro- 
totype of the phoneme they most strongly activate. This mechanism, 
coupled with the competition mechanism at the phoneme level, accounts 
for better discrimination between than within categories. However, we 
could account for categorical perception by suggesting that subjects do 
not have access to the acoustic level at all, but only to the results of the 
phoneme identification process. Similarly, lexical effects on phoneme 
identification can be accounted for by assuming that subjects (sometimes) 
read out from the word level and infer the identity of phonemes from the 
lexical code (Marslen-Wilson, 1980; Marslen-Wilson & Welsh, 1978; 
Morton, 1979). In the case of “phonotactic rule” effects, other interpre- 
tations are of course available as well. One could, for example, simply 
suppose that subjects use knowledge of the phonotactic constraints, per- 
haps captured in units standing for legal phoneme pairs, and that it is the 
output of such units that accounts for the influence of phonotactic reg- 
ularity on phoneme identification. 

We know of no single convincing empirical reason to prefer feedback 
accounts to other possibilities. However, we have two theoretical reasons 
for preferring to retain top-down as well as bottom-up interactions in our 
activation models. One reason has to do with the simplicity of the re- 
sulting decision mechanisms. Feedback allows higher level considerations 
to influence the outcome of processing at lower levels in just the same 
way that lower level considerations influence the outcome of processing 
at higher levels. The influences of lexical and other constraints on pho- 
neme identification need not be pushed out of the theory of speech per- 
ception itself into decision processes, but are integrated directly into the 
perceptual process in a unified way. Given top-down as well as bottom- 
up processing, the decision mechanisms required for generating overt 
responses that reflect lexical and other contextual influences are greatly 
simplified; no special provision needs to be made for combining lexical 
and phonetic outputs in the decision mechanism. 

A second reason for retaining feedback comes up when we consider 
the problem of learning. Although we have not discussed how learning 
might occur in TRACE, we have assumed that the mechanisms of speech 
perception are acquired through modification of connection strengths. 
Very roughly, in many learning schemes, connections between units are 
strengthened when two units tend to be activated simultaneously, at the 
expense of connections between units that tend not to be activated at the 
same time (cf. Grossberg, 1978; Rosenblatt, 1962; Rumelhart & Zipser, 
1985). In such schemes, however, there is a serious problem if activation 
is entirely bottom-up; for in that case, once a particular unit has been 
“tuned” to respond to a particular pattern, it is difficult to retune it; it 
fires when its “expected” pattern is presented, and when it fires, its 
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tendency to respond to that pattern only increases. Feedback provides a 
way to break this vicious cycle. If higher levels insist that a particular 
phoneme is present, then the unit for that phoneme can become activated 
even if the bottom-up input would normally activate some other phoneme 
instead; then the learning mechanism can “retune” the detector for the 
phoneme so that it will need to depend less on the top-down input the 
next time around. 

In general, the use of feedback appears to place more of the intelligence 
required for perception and perceptual learning into the actual perceptual 
mechanism itself, and to make the mechanisms which exhibit this intel- 
ligence explicit. As formulated here, these mechanisms are incredibly 
simple; yet they appear to buy quite a lot which often gets pushed into 
unspecified “decision” and “postperceptual guessing” processes (e.g., 
Forster, 1976). 

Finally, the success of TRACE also depends upon its architecture, 
rather than the fundamental computational principles of activation and 
competition, or the decision to include feedback. By architecture, we 
mean the organization of the Trace structure into layers consisting of units 
corresponding to items occurring at particular times within the utterance. 
As we noted in the introduction, this architecture is one we decided upon 
only after several other kinds of architecture had failed. 

There are three principle positive consequences of the TRACE archi- 
tecture. First, it keeps straight what occurred when in the speech stream. 
Competition occurs only between units competing to represent the same 
portion of the input stream. Multiple copies of the same phoneme and 
word units can be active at the same time without producing confusion. 
Furthermore, the architecture permits the same competition mechanism 
that chooses among alternative word interpretations of a single-word ut- 
terance to segment longer utterances into words. No separate control 
structure, resetting the mechanism at the beginning of each new word, is 
required. 

Second, the architecture permits both forward and backward interac- 
tions. Backward interactions are absolutely essential if the model is to 
account for the fact that the identity of a phoneme (or a word; Warren & 
Sherman, 1974) can be influenced by what comes after it as well as what 
comes before it. Some kind of record of the past is necessary to capture 
these kinds of influences, as well as to provide a clear picture of the 
sources of the more conventional effects of preceding context, and the 
Trace construct lays this out in a way that is both comprehensible and 
efficient. 

Third, the Trace structure provides an explicit mechanism which in- 
stantiates the idea that there may be no distinction between the mecha- 
nisms which carry out perceptual processing and those which provide a 
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working memory for the results of the perceptual process. At one and 
the same time, the Trace is a perceptual processing system and a memory 
system. As a result, the model automatically accounts for the fact that 
coherent memory traces persist longer than incoherent ones. The co- 
herent ones resonate through interactive (that is, bottom-up and top- 
down) activation, while incoherent ones fail to establish a resonance and 
therefore die away more rapidly. 

Several of these aspects of TRACE overlap with assumptions made in 
other models, as mentioned in previous sections; continuity between 
working memory and the perceptual processing structures has been sug- 
gested by a number of other authors (e.g., Conrad, 1962), and the notion 
that working memory is a dynamic processing structure rather than a 
passive data structure has previously been advocated by Crowder (1978, 
1981) and Grossberg (1978). Indeed, Grossberg has noted that resonating 
activation/competition processes can both enhance a perceptual repre- 
sentation and increase the retention of a representation; his analysis of 
interactive-activation processes in perception and memory captures the 
continuity of perception and memory as well as many other desirable 
properties of interactive-activation mechanisms. 

Some Dejkiencies of TRACE 
Although TRACE has had a number of important successes, it also has 

a number of equally important deficiencies. A number of these deficien- 
cies relate to simplifying assumptions of the simulation model. It is im- 
portant to be clear that such deficiencies are not intrinsic to the basic 
structure of the model but to the simplifications we have imposed upon 
it to increase our ability to understand its basic properties. Certain de- 
ficiencies-such as the assumption that all phonemes are the same 
length, that all features are equally salient and useful and overlap an equal 
amount from one phoneme to another-are not present in TRACE I. 
Obviously a fully realistic model would take account of such differences. 
Other factors that should be incorporated in a more complete model in- 
clude some provision for effects of word frequency, and some mecha- 
nisms for exploiting available cues to word boundaries. 

Another deficiency of the model is that the decision mechanisms have 
not been fully enough elaborated. For example, as it stands the model 
does not provide a mechanism for deciding when a nonword has been 
presented. Nor have we specified how decision processes would actually 
use the information available at the word level to locate word-initial pho- 
nemes. A related problem is the lack of an explicit provision for vari- 
ability in the activation and/or readout processes. Incorporating vari- 
ability directly into a simulation model would greatly increase the com- 
plexity of the simulation process, but would also increase the model’s 
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ability to capture the detailed properties of reaction time distributions 
and errors (Ratcliff, 1978). 

So far we have considered deficiencies which we would attribute to 
simplifying assumptions adopted to keep TRACE as simple and trans- 
parent in its behavior as possible. However, there are some problems that 
are intrinsic to the basic structure of the model. 

One fundamental deficiency of TRACE is that fact that it requires 
massive duplication of units and connections, copying over and over 
again the connection patterns that determine which features activate 
which phonemes and which phonemes activate which words. As we al- 
ready noted, learning in activation models (e.g., Ackley, Hinton, & 
Sejnowski, 1985; Grossberg, 1976; Rumelhart & Zipser, 1985) usually 
involves the retuning of connections between units depending on their 
simultaneous activation. Given TRACE’s architecture, such learning 
would not generalize from one part of the Trace to another and so would 
not be accessible for inputs arising at different locations in the Trace. A 
second problem is that the model, as is, is insensitive to variation in global 
parameters, such as speaking rate, speaker characteristics and accent, 
and ambient acoustic characteristics. A third deficiency is that it fails to 
account for the fact that one presentation of a word has an effect on the 
perception of it a very short time later (Nusbaum & Slowiaczek, 1982). 
These two presentations, in the current version of the model, simply 
excite separate tokens for the same word in different parts of the Trace. 

All these deficiencies reflect the fact that the TRACE consists of a 
large set of independent tokens of each feature, phoneme, and word unit. 
What appears to be called for instead is a model in which there is a single 
stored representation of each phoneme and each word in some central 
representational structure. If this structure is accessed every time the 
word is presented, then we could account for repetition priming effects. 
Likewise, if there were a single central structure, learning could occur in 
just one set of units, as could dynamic returning of feature-phoneme and 
phoneme-word connections to take account of changes in global param- 
eters or speaker characteristics. 

However, it remains necessary to keep straight the relative temporal 
location of different feature, phoneme, and word activations. Thus it will 
not do to simply abandon the Trace in favor of a single set of units 
consisting of just one copy of each phoneme and one copy of each word. 

It seems that we need to have things both ways: we need a central 
representation that plays a role in processing every phoneme and every 
word and that is subject to learning, retuning, and priming. We also need 
to keep a dynamic trace of the unfolding representation of the speech 
stream, so that we can continue to accommodate both left and right con- 
textual effects. 
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We are currently beginning to develop a model that has these proper- 
ties, based on a scheme for using a central network of units to tune the 
connections between the units in the Trace in the course of processing, 
thereby effectively programing it “on the fly.” Similar ideas have already 
been applied to visual word recognition (McClelland, 1985, 1986). Our 
hope is that a new version of the model based on these ideas will preserve 
the positive features of TRACE I and TRACE II, while overcoming their 
principle deficiencies. 

Some General Issues in Speech and Language Perception 
There are a number of general issues in speech and language percep- 

tion. Four questions in particular appear to lie close to the heart of our 
conception of what speech perception is all about. First, what are the 
basic units in speech perception? Second, what is the percept, and which 
aspects of the processing of spoken language should be called perceptual? 
Third, what is the representation of linguistic rules? Fourth, is there any- 
thing unique or special about speech perception? We conclude this article 
by considering each issue from the perspective we have developed 
through the course of our explorations of TRACE. 

What is the perceptual unit? Throughout this article, we have consid- 
ered three levels of processing-feature, phoneme, and word. At each 
level, individual processing units stand for hypotheses about the features, 
phonemes, and words that might be present at different points in the input 
stream. It is worth noting that most aspects of the model’s performance 
are independent of the specific assumptions that we have made about the 
units, or even the levels. Thus, if we replaced the phoneme level with 
demisyllables (Fujimura & Lovins, 1978) or phoneme triples (Wickelgren, 
1969), very little of the behavior of the model would change. These units 
can capture some of the coarticulatory influences on phoneme identity, 
and they would reduce some of the word-boundary ambiguities faced by 
the current version of the model, but neither coarticulatory influences 
nor word boundary ambiguities would disappear altogether (see Elman 
& McClelland, in press, for further discussion). 

In fact, interactive activation models like TRACE can be formulated 
in which each perceptual object is represented, not by a single unit, but 
by a pattern of activation over a collection of units. For example, the 
phoneme units in each time slice of TRACE might be replaced by a 
different set of units which did not have a one-to-one correspondence to 
phonemes. A phoneme would be represented by a particular pattern of 
activation over the set of units (each representing, perhaps, to some con- 
junction of lower level features) rather than by a single unit in the set. 

There are some computational advantages of distributed representation 
compared to our “one unit one concept” assumption (Hinton, Mc- 
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Clelland, & Rumelhart, in press), but it is very difficult to find principled 
ways of distinguishing between local and distributed representational 
schemes empirically. Indeed, in certain cases there is an exact mapping 
and, in general, it is possible to approximate most aspects of the behavior 
of a local scheme with a distributed one and vice versa (Smolensky, 
1986). In light of this, our use of local as opposed to distributed repre- 
sentations is not perhaps as significant as it might appear at first glance. 
What is essential is the information that the representation captures, 
rather than whether it does so via distributed or local representation. The 
use of local representations, with each unit (at the phoneme and word 
levels, anyway) representing a mutually exclusive alternative makes it 
much easier to relate the states of the processing system to overt response 
categories but is not otherwise a fundamental feature of the structure of 
the model. 

What is the percept? At a number of points in this article, we have 
alluded to ways in which our conception of perception differs from the 
usage of other authors. Such concepts as perception are inherently tied 
to theory, and only derive their meaning with respect to particular theo- 
retical constructs. Where does the TRACE model place us, then, with 
respect to the question, what is speech perception? 

For one thing, TRACE blurs the distinction between perception and 
other aspects of cognitive processing. There is really no clear way in 
TRACE to say where perceptual processing ends and conceptual pro- 
cesses or memory begin. However, following Marr’s (1982) definition of 
visual perception, we could say that speech perception is the process of 
forming representations of the stimulus-the speaker’s utterance-at 
several levels of description. TRACE provides such a set of representa- 
tions, as well as processes to construct them. On this view, then, the 
Trace is the percept, and interactive activation is the process of percep- 
tion. 

Aspects of this definition are appealing. For example, on this view, the 
percept is a very rich object, one that refers both to abstract, conceptual 
entities like words and perhaps at higher levels even meanings, as well 
as to more concrete entities like acoustic signals and features. Perception 
is not restricted to one or a subset of levels, as it is in certain models 
(e.g., Marslen-Wilson, 1980; Morton, 1979). 

On the other hand, the definition seems overly liberal, for there is 
evidence suggesting that perceptual experience and access to the results 
of perceptual processing for the purposes of overt responding may not 
be completely unconstrained. A number of experiments, both in speech 
(e.g., Foss & Swinney, 1973; McNeil & Lindig, 1973) and reading (Drew- 
nowski & Healy, 1977; Healy, 1976) suggest that under certain conditions 
lower levels of processing are inaccessible, or are at best accessed only 
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with extra time or effort. On this evidence, if perception is to form rep- 
resentations, and if the representations are anything like those postulated 
in TRACE, then perception is quite independent of the experience of the 
perceiver and of access to the percept. Put another way, we may choose 
to define the Trace as the percept, but it is not the perceptual experience. 
This does not seem to be a very satisfactory state of affairs. 

One coherent response to these arguments would be to say that the 
Trace is not the experience itself, but that some part or parts of it may 
be the object of perceptual experience. It seems sensible, for example, 
to suppose that the percept itself consists of that part of the Trace under 
scrutiny by the decision mechanisms. On this view, it would not be in- 
coherent to suppose that representations might be formed which would 
nevertheless be inaccessible either to experience or to overt response 
processes. It would be a matter separate from the analysis of the inter- 
active-activation process itself to specify the scope and conditions of 
access to the Trace. In our simulations, we have assumed that the deci- 
sion mechanism could be directed with equal facility to all levels, but this 
may turn out to be an assumption that does not apply in all cases. 

How are rules represented? It is common in theories of language to 
assume without discussion that linguistic rules are represented as such 
in the mind of the perceiver, and that perception is guided primarily by 
consultation of such rules. However, there are a number of difficulties 
associated with this view. First, it does not explain how exceptions are 
handled; it would seem that for every exception, there would have to be 
a special rule that takes precedence over the more general formulation. 
Second, it does not explain aspects of rule acquisition by children learning 
language, particularly the fact that rules appear to be acquired, at least 
to a large extent, on a word by word basis; acquisition is marked by a 
gradual spread of the rule from one lexical item or set of lexical items to 
others. Third, it does not explain how rules come into existence histori- 
cally; as with acquisition, it appears that rules spread gradually over the 
lexicon. It is difficult to reconcile several of these findings with traditional 
rule-based accounts of language knowledge and language processing. 

Models like TRACE and the interactive-activation model of word rec- 
ognition take a very different perspective on the issue of linguistic rules. 
They are not represented as such, but rather they are built into the per- 
ceptual system via the excitatory and inhibitory connections needed for 
processing the particular items which embody these rules. Such a mech- 
anism appears to avoid the problem of exceptions without difficulty, and 
to hold out the hope of accounting for the observation that rule acquisition 
and rule change are strongly tied to particular items which embody the 
rules. 

What is special about speech? We close by raising a question that often 
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comes up in discussions of the mechanisms of speech perception. Is 
speech special? If so, in what ways? It has been argued that speech is 
special because of the distinctive phenomenon of categorical perception; 
because of the encodedness of information about one phoneme in those 
portions of the speech stream that are generally thought to represent other 
phonemes; because the information in the speech stream that indicates 
the presence of a particular phoneme appears not to be invariant at any 
obvious physical level; because of the lack of segment boundaries, and 
for a variety of other reasons. 

Over the last several years, a number of empirical arguments have been 
put forward that suggest that perhaps speech may not be so special, or 
at least, not unique. Cue trade-offs and contextual influences are, of 
course, present in many other domains (Medin & Barsalou. in press), 
and a large number of studies have reported categorical perception in 
other modalities (see Repp, 1984, for a discussion). Computational work 
on problems in vision have made clear that information that must be 
extracted from visual displays is often complexly encoded with other 
information (Barrow & Tenenbaum, 1978; Marr, 1982), and the lack of 
clear boundaries between perceptual units in vision is notorious (Ballard 
et al., 1983; Marr, 1982). Thus, the psychological phenomena that char- 
acterize human speech perception, and the computational problems that 
must be met by any mechanism of speech perception, are not, in general, 
unique to speech. To be sure, the particular constellation of problems that 
must be solved in speech perception is different than the constellation of 
problems faced in any other particular case, but most of the individual 
problems themselves do appear to have analogs in other domains. 

We therefore prefer to view speech as an excellent test bed for the 
development of an understanding of mechanisms which might turn out 
to have considerably broader application. Speech is special to us, since 
it so richly captures the multiplicity of the sources of constraint which 
must be exploited in perceptual processing, and because it so clearly 
indicates the powerful influences of the mechanisms of perception on the 
constructed perceptual representation. We see the TRACE model as an 
example of a large class of massively parallel, interactive models that 
holds great promise to provide a deeper understanding of the mechanisms 
generally used in perception. 
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